
z/OS
Version 2 Release 3

UNIX System Services
User's Guide

IBM

SA23-2279-30

Note

Before using this information and the product it supports, read the information in “Notices” on page
321.

This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2019-02-16
© Copyright International Business Machines Corporation 1996, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures.. xv
List of Tables..xvii

About this document...xix
Who should use z/OS UNIX System Services User's Guide?..xix

What is in z/OS UNIX System Services User's Guide?.. xix
Tasks that can be performed in more than one environment...xix
z/OS information.. xix

How to send your comments to IBM...xxi
If you have a technical problem..xxi

Summary of changes..xxii
Summary of changes for z/OS UNIX for Version 2 Release 3 (V2R3)... xxii
Summary of changes for z/OS UNIX for Version 2 Release 2 (V2R2)... xxii
z/OS Version 2 Release 1 summary of changes...xxii

Part 1. The z/OS shells...1

Chapter 1. An introduction to the z/OS shells...3
About shells.. 3

Shell commands and utilities... 3
The locale in the shells... 4
Daemon support... 4
Running an X-Window application..4
The shell user.. 4
Security..4

Accessing the shells — the choices..5
Terminal emulators... 5

Interoperability between the shells and MVS... 6
Parallels between the MVS environment and the shell environment... 7

Programming for everyday tasks.. 8
Editing..8
Job control.. 9
Background jobs... 9
Programming...9
Debugging... 9
Data management...9

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell.. 11
Differences from a UNIX or AIX environment... 11
Invoking the shell... 11

Changing options on the OMVS command...12
Understanding the shell screen... 12

Working in line mode.. 14
Why isn't your output displayed on the screen?.. 14

Determining function key settings and the escape character...15
The function key functions... 15
The escape character... 18

Entering a shell command..18
Customizing the variant characters on your keyboard.. 18
Entering a long shell command.. 18

 iii

Entering a shell command from TSO/E.. 19
Interrupting a shell command... 19
Typing escape sequences in the shell... 19

Suppressing the newline character..20
Keyboard remapping...20

Determining your session status... 20
Scrolling through output.. 21

Using function keys or subcommands... 21
Using cursor scrolling... 22

Running a subcommand...22
Switching to subcommand mode...22

Using multiple sessions... 22
Starting sessions...23
Switching between sessions.. 23

Customizing the OMVS interface... 23
An example of customizing the OMVS command.. 23
The alarm setting (ALARM | NOALARM)...24
Autoscrolling (AUTOSCROLL | NOAUTOSCROLL)...24
The character conversion table (CONVERT).. 24
Double-byte character set support (DBCS | NODBCS).. 24
Debugging for the OMVS command (DEBUG).. 24
Giving an application control of the command line (ECHO | NOECHO)...24
Ending 3270 pass-through mode (ENDPASSTHROUGH).. 25
The escape character (ESCAPE)...25
Controlling the size of the output scroll buffer (LINES)...25
Function key settings (PFn).. 25
Displaying the function key settings (PFSHOW | NOPFSHOW)... 25
Specifying Language Environment runtime options (RUNOPTS).. 25
Multiple sessions (SESSIONS)..26
The shared TSO/E address space (SHAREAS | NOSHAREAS)... 26
Controlling data recorded in the debug data set (WRAPDEBUG)..26

Performing TSO/E work or ISPF work after invoking the shell..26
Entering a TSO/E command from the z/OS shell... 26
Switching to TSO/E command mode..27

ftp or telnet from TSO...27
Exiting the shell.. 27
Getting rid of a hung application..28
Using a double-byte character set (DBCS).. 28

Single-byte restrictions.. 29

Chapter 3. The asynchronous terminal interface to the shells...31
ASCII-EBCDIC translation..31
Using rlogin to access the shell..31
Using telnet to access the shell... 31
Using Communications Server login to access the shell...31
The shell session.. 32
Entering a shell command..32
Interrupting a shell command... 32
Using multiple sessions... 32
Using a double-byte character set (DBCS).. 32
Standard shell escape characters..33

Chapter 4. Customizing the z/OS shell..35
Customizing your .profile... 35

Quoting variable values.. 36
Changing variable values dynamically... 37

Understanding shell variables..37
Customizing your shell environment: The ENV variable... 38

iv

Customizing the search path for commands: The PATH variable... 38
Adding your working directory to the search path...39
Checking the search path used for a command...39
Customizing the FPATH search path: The FPATH variable.. 40

Customizing the DLL search path: The LIBPATH variable...40
Improving the performance of shell scripts.. 40
Changing the locale in the shell... 40

Advantages of a locale compatible with the MVS code page.. 41
Advantages of a locale generated with code page IBM-1047.. 41
Changing the locale setting in your profile...41
The LC_SYNTAX environment variable...43
The LOCPATH environment variable.. 44

Customizing the language of your messages.. 44
Setting your local time zone...44
Building a STEPLIB environment: The STEPLIB environment variable.. 45

Restrictions on STEPLIB data sets... 45
Setting options for a shell session... 46

Exporting variables... 46
Controlling redirection.. 46
Preventing wildcard character expansion..46
Displaying input from a file...47
Running a command in the current environment.. 47
Displaying current option settings..47

Chapter 5. Customizing the tcsh shell...49
Understanding the startup files... 49

Quoting variable values.. 50
Changing variable values dynamically... 50

Understanding shell variables..51
Customizing your shell environment: The .tcshrc file... 51
Customizing the search path for commands: The PATH variable... 52

Adding your working directory to the search path...53
Checking the search path used for a command...53

Customizing the DLL search path: The LIBPATH variable...54
Changing the locale in the shell... 54

Advantages of a locale compatible with the MVS code page.. 54
Advantages of a locale generated with code page IBM-1047.. 54
Changing the locale setting in your profile...55
The LC_SYNTAX environment variable...56
The LOCPATH environment variable.. 57

Customizing the language of your messages.. 57
Setting your local time zone...57
Building a STEPLIB environment: The STEPLIB environment variable.. 58

Restrictions on STEPLIB data sets... 58
Setting variables for a shell session...59

Displaying current option settings..59
Controlling redirection.. 59
Preventing wildcard character expansion..59
Displaying input from a file...59
Displaying deletion verification.. 60

Files accessed at termination.. 60

Chapter 6. Working with z/OS shell commands..61
Specifying shell command options.. 61
Specifying options with accompanying arguments...62

Help for shell command usage...62
Understanding standard input, standard output, and standard error.. 62
Redirecting command output to a file... 63

 v

Redirecting input from a file...64
Redirecting error output to a file..64
Closing a file... 64
Dumping nontext files to standard output...65
Setting up an alias for a command...65

Defining an alias..65
Redefining an alias for a session.. 66
Setting up an alias for a particular version of a command.. 66
Using alias tracking...67
Turning off an alias..68

Combining commands..68
Using a semicolon (;)...68
Using && and ||... 68
Using a pipe...69

Using substitution in commands... 69
Using the find command in command substitution constructs...70

Characters that have special meaning to the shell... 70
Characters used with commands...71
Characters used in file names.. 71
Redirecting input and output..72

Using a special character without its special meaning... 73
The backslash .. 73
A pair of single quotation marks (' ')...73
A pair of double quotation marks (" ")..74

Using a wildcard character to specify file names.. 74
The * character..74
The ? character... 74
The square brackets .. 75

Retrieving previously entered commands... 75
Retrieving commands from the history file.. 76
Editing commands from the history file... 76
Using the retrieve function keys... 77
Command-line editing.. 77

Using record-keeping commands..79
Finding elements in a file and presenting them in a specific format.. 79
Timing programs...80
Using the passwd command.. 80
Switching to superuser or another ID..80
Using the whoami command..81
Running a TSO/E command... 81

Using the tso command.. 81
Using the tsocmd command...82

Using the man command to get online help..82
Shell messages...83

Chapter 7. Working with tcsh shell commands...85
Specifying shell command options.. 85
Specifying options with accompanying arguments...86

Help for shell command usage...86
Understanding standard input, standard output, and standard error.. 86
Redirecting command output to a file... 87
Redirecting input from a file...88
Redirecting error output to a file..88
Dumping nontext files to standard output...88
Setting up an alias for a command...88

Defining an alias..89
Redefining an alias for a session.. 89
Setting up an alias for a particular version of a command.. 90

vi

Turning off an alias..90
Combining commands..91

Using a semicolon (;)...91
Using && and ||... 91
Using a pipe...92

Using substitution in commands... 92
Using the find command in command substitution constructs...93

Characters that have special meaning to the shell... 93
Characters used with commands...93
Characters used in file names.. 94
Redirecting input and output..95

Using a special character without its special meaning... 95
The backslash .. 95
A pair of single quotation marks (' ')...96
A pair of double quotation marks (" ")..96

Using a wildcard character to specify file names.. 96
The * character..96
The ? character... 97
The square brackets... 97

Retrieving previously entered commands... 98
Retrieving commands from the history file.. 98
Editing commands from the history file... 99
Using the retrieve function keys... 99
Command-line editing.. 99

Using file name completion... 100
Using record-keeping commands..101
Finding elements in a file and presenting them in a specific format..102
Timing programs.. 102
Using the passwd command..103
Switching to superuser or another ID..103
Using the whoami command... 104
Running a TSO/E command... 104

Using the tso command..104
Using the tsocmd command...105

Online help... 105
Using the man command..105

Shell messages...105

Chapter 8. Writing z/OS shell scripts.. 107
Running a shell script...107
Using the magic number.. 108
Using TSO/E commands in shell scripts.. 108
Using variables... 108

Creating a variable.. 108
Calculating with variables.. 109
Exporting variables... 110
Associating attributes with variables... 111
Displaying currently defined variables...112

Using positional parameters — the $N construct..112
Using quotation marks to enclose a construct in a shell script...113

Using parameter and variable expansion.. 114
Using special parameters in commands and shell scripts..116
Using control structures...117

Using the test command to test conditions... 117
The if conditional.. 119
The while loop...121
The for loop...121
Combining control structures...122

 vii

Using functions...122
Autoloading functions.. 123

Chapter 9. Writing tcsh shell scripts... 125
Running a shell script...125
Using the magic number.. 126
Using TSO/E commands in shell scripts.. 126
Using variables... 126

Creating a shell variable... 126
Calculating with variables.. 127
Setting environment variables... 128

Using positional parameters — the $N construct..129
Using quotes to enclose a construct in a shell script.. 130

Using parameter and variable expansion.. 131
Using special parameters in commands and shell scripts..131
Using control structures...132

The if conditional.. 132
The while loop...133
The foreach loop...134
Combining control structures...134

Chapter 10. Using job control in the shells... 135
Running several jobs at once (foreground and background).. 135

Starting a job in the background with an ampersand (&).. 136
Moving a job to the background... 136
Moving a job to the foreground.. 136

Setting up job tracing... 136
Checking the status of jobs..137

Using the jobs command.. 137
Using the ps command... 137

Canceling a job... 138
Canceling a foreground job...138
Canceling a background job... 138

Stopping and resuming a job... 139
Stopping a foreground job.. 139
Stopping a background job...139
Resuming a stopped job... 139

Delaying a command..139
Exiting the shell with background jobs running.. 139

Changing the default in the z/OS shell... 140
Comparison of shell background jobs and MVS batch jobs.. 140

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF.. 143
JCL support for z/OS UNIX...143

The PATH keyword..143
The DSNTYPE keyword...144
Using the ddname in an application...144
Specifying a ddname in the JCL... 145

Using the submit command... 145
The BPXBATCH utility...145

Aliases for BPXBATCH.. 146
Defining standard input, output, and error streams for BPXBATCH... 146
Passing environment variables to BPXBATCH... 147
Passing parameter data to BPXBATCH.. 149
Invoking BPXBATCH in a batch job.. 151
Invoking BPXBATCH from the TSO/E environment... 154

Using TSO/E REXX for z/OS UNIX processing... 156
Using the ISPF shell... 157

viii

Invoking the ISPF shell...157
Working in the ISPF shell... 157
Using the online help facility.. 158

Chapter 12. Performance: Running executable files..161
Improving shell script performance.. 162

Chapter 13. Communicating with other users..163
Using mailx to send and receive mail.. 163

Steps for sending mail to another user.. 163
Sending mail to a distribution list...164
Sending a message to an MVS operator...164
Receiving mail from other users...164
Replying to mail.. 165
Saving and deleting mail.. 165
Ending the mailx program.. 166

Using write to send a message or a file... 166
Sending a message: An example... 166
Ending a message...166
Sending a file.. 167

Using talk for an online conversation.. 167
Beginning a conversation: An example..167
Viewing the conversation... 167

Using wall to broadcast messages.. 168
Controlling messages and online conversations...168
Using the UUCP network..168

Transferring a file to a remote site... 169
Transferring multiple files to a remote site..170
Transferring a file to the local public directory.. 170
Notification of transfer..170
Permissions...170
Transferring a file from a remote site...171
Checking a file's transfer status... 171
Working with your files in the public directory.. 171
Running a command on a remote site... 172

Using TSO/E to send or receive mail..172
Sending a message...172
Sending a message to a distribution list.. 173
Sending a message to an MVS operator...173
Receiving mail from other users...173
Receiving messages from other systems...173

Part 2. The z/OS UNIX file system.. 175

Chapter 14. An introduction to the z/OS UNIX file system...177
The root file system and mountable file systems... 177
Directories.. 178
Files.. 178

Files not in the file system..179
Comparison between MVS data sets and the z/OS UNIX file system... 179
Sharing files between LPARs..180
Executable modules in the file system.. 180

Path and path name... 181
Requirement for an absolute path name... 182
Resolving a symbolic link in a path name.. 182

Command differences with symbolic links..183
Using commands to work with directories and files... 184

 ix

Entering a TSO/E command... 185
Using a relative path name on TSO/E commands..185
Finding the data set that contains a file...185

Using the ISPF shell to work with directories and files...186
Using the Network File System feature... 186

External links.. 186
Security for the file system.. 186
The file system and power failures..186

Chapter 15. Converting files between code pages... 189
Enhanced ASCII... 189

File tagging in Enhanced ASCII.. 189
Unicode Services..189

File tagging in Unicode Services...190
Automatic code set conversion... 190
Porting considerations... 190

Chapter 16. Working with directories... 191
The working directory.. 191
Displaying the name of your working directory...191
Changing directories.. 192

Using notations for relative path names.. 192
Creating a directory..193
Removing a directory... 195
Listing directory contents.. 195
Comparing directory contents... 196
Finding a directory or file... 197

Chapter 17. Working with files.. 199
Using an editor to create a file... 199
Naming files..199

Processing in uppercase and lowercase..200
Deleting a file..201

Deleting files over a certain age... 201
Identifying a file by its inode number..202
Creating links..202

Creating a hard link...202
Creating a symbolic link..203
Creating an external link...204

Deleting links..205
Renaming or moving a file or directory..205
Comparing files.. 205
Sorting file contents... 206

Using sorting keys — an example... 207
Counting lines, words, and bytes in a file.. 208
Searching files by using pattern matching.. 208

Patterns...209
Regular expressions... 210

Browsing files... 210
Browsing files without formatting.. 210
Browsing files with formatting... 211

Simultaneous access to a file.. 211
Backing up and restoring files: options... 211

Backing up and restoring files from the shell.. 212
Backing up a complete directory into an MVS data set... 213
Restoring a complete directory from an MVS data set.. 213
Viewing the contents of an archive.. 214
Converting between code pages ... 214

x

Appending to an existing archive... 215
Backing up selected files by date...216

Listing process IDs of processes with open files.. 216

Chapter 18. Handling security for your files... 217
Default permissions set by the system... 217
Changing permissions for files and directories... 219

Using a symbolic mode to specify permissions...219
Using octal numbers to specify permissions... 220

Using the sticky bit on a directory to control file access...222
Auditing file access.. 222
Displaying file and directory permissions... 223
Setting the file mode creation mask..224
Changing the owner ID or group ID associated with a file..224
Temporarily changing the user ID or group ID during execution..225
Displaying extended attributes..225
Using access control lists (ACLs) to control access to files and directories.....................................225

Setting up ACL support .. 226

Chapter 19. Editing files.. 227
Using ISPF to edit a z/OS UNIX file..227
Using the vi screen editor.. 228

Basic principles...228
A simple vi session... 229
Adding text..230
Moving the cursor up and down the screen...231
Moving up and down through a file.. 231
Moving the cursor on the line... 231
Moving to sentences and paragraphs.. 232
Deleting text..233
Changing text.. 233
Undoing a command...233
Saving a file... 234
Searching for strings...234
Moving text..236
Copying text.. 237
Other vi features... 237
Message: vi/ex edited file recovered..237

Using the ed editor... 239
Creating and saving a text file.. 239
Editing an existing file...240
Identifying line numbers and changing your position in the buffer.. 240
Appending one file to another..241
Displaying the current line in the edit buffer... 241
Changing a character string..241
Inserting text at the beginning or end of a line..242
Deleting lines of text...242
Changing lines of text... 243
Inserting lines of text..243
Copying lines of text... 243
Moving lines of text...244
Undoing a change... 244
Entering a shell command while using ed... 244
Ending an ed edit session...244
Default permissions..244

Using sed to edit a z/OS UNIX file... 245

Chapter 20. Printing files...247

 xi

Formatting files for online browsing or printing.. 247
Printing requests in shell scripts..247

Printing with the lp command..248
Printing with TSO/E commands... 248
Checking the status of print jobs... 249

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets.............................. 251
Copying data using z/OS shell commands.. 251
Copying data using TSO/E commands...251
Copying a sequential data set or PDS member into a z/OS UNIX file...252

Using cp to copy a sequential data or PDS member into a z/OS UNIX file................................. 253
Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a sequential data set.....253

Copying a PDS or PDSE to a z/OS UNIX directory... 256
Using cp to copy a PDS to a z/OS UNIX directory.. 256
Using OPUTX to copy a sequential data set or members of a PDS or PDSE............................... 256

Copying an MVS VSAM data set to a z/OS UNIX file..257
Copying a z/OS UNIX file into a sequential data set or PDS member...257

Using cp to copy a z/OS UNIX file into a sequential data set or PDS member........................... 258
Using OGET and OCOPY to copy a file into a sequential data set or a PDS member..................258
OGET... 258
OCOPY...259

Copying z/OS UNIX files into a PDS or PDSE...261
Using cp to copy z/OS UNIX files into a PDS or PDSE..261
Using OGETX to copy files into a PDS or PDSE.. 261

Copying files within the z/OS UNIX file system...262
Copying an MVS data set into another MVS data set.. 263

Example: Using ALLOCATE and OCOPY... 264
Example: Using JCL and OCOPY.. 264

Copying executable modules between MVS data sets and the z/OS UNIX file system................... 264
Using cp to copy executables between MVS and z/OS UNIX.. 264
Using TSO/E commands and JCL to copy executables... 264

Copying data: Code page conversion...266
Single-byte data..266
Double-byte data..267

Chapter 22. Transferring files between systems.. 269
File transfer directly to or from z/OS UNIX..269

Transferring files using File Transfer Protocol (FTP)... 269
Transferring files using the Network File System feature... 269
Transferring files using the SEND and RECEIVE programs... 269
Transferring files by using the File Transfer, Access, and Management Function...................... 270

File transfer using MVS data sets.. 270
Transferring files into the z/OS UNIX file system.. 270
Transferring files to the workstation.. 270

Transporting an archive file on tape or diskette..270
Putting an archive file into the file system... 271
Sending an archive file to others..272

Appendix A. Advanced vi topics... 275
Editing options... 275

Setting tab stops.. 275
Using abbreviations..275
Other editing options... 275
Setting up an editing options command file..276

Editing several files..276
Combining files.. 277
Editing program source code...277

xii

Controlling indention..277
Searching for opening and closing brackets..278
Making substitutions..278

Appendix B. Using awk.. 281
Data files.. 281

Records...281
Fields.. 282

The shape of a program...282
Simple patterns.. 282
Using blanks and horizontal tabs...283
Applying more than one instruction.. 283
Assigning values to variables...284
String values...284
Numeric values...284
Using the print action for output..285

Running awk programs..285
The awk command line.. 285
Program files.. 286
Sources of data...286

Operators... 287
Comparison operators... 287
Arithmetic operators.. 287
Compound assignments.. 289
Increment and decrement operators.. 289
Matching operators.. 289
Multiple-condition operators...289

Regular expressions.. 290
Pattern ranges..292
Using special patterns... 292
Built-in variables..293

Built-in numeric variables..293
Built-in string variables.. 294

Statements and loops..295
The if statement... 296
The while loop.. 296
The for loop.. 296
The next statement.. 296
The exit statement... 296

Functions... 296
Arithmetic functions...297
String manipulation functions..297
User-defined functions.. 299
Passing an array to a function..299
The Getline function...299

Running system commands.. 300
Controlling awk output.. 300

Formatting the output.. 300
Placeholders...301
Escape sequences..302

Appendix C. Code page conversion when the shell and MVS have different
locales...305
Customizing the variant characters on your keyboard... 305
Using the CONVERT option on the OMVS command.. 305
When do you need to convert between code pages?... 306
Methods for converting data... 306

 xiii

The POSIX portable file name character set.. 306
The POSIX portable character set...306

Appendix D. Escape sequences for a 3270 keyboard... 309
Escape sequences for portable characters not on your keyboard...309
Escape sequences for control characters...310
Escape sequences unique to a conversion table..311

BPXFX100 conversion table.. 311
BPXFX111 and BPXFX211 conversion tables...312
BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480,

BPXFX484, BPXFX485, BPXFX497 conversion tables.. 312

Appendix E. Locale objects, source files, and charmaps...................................... 315

Appendix F. Accessibility... 317
Accessibility features.. 317
Consult assistive technologies.. 317
Keyboard navigation of the user interface.. 317
Dotted decimal syntax diagrams...317

Notices..321
Terms and conditions for product documentation... 322
IBM Online Privacy Statement.. 323
Policy for unsupported hardware..323
Minimum supported hardware..324
Programming interfaces.. 324
Trademarks.. 324

Acknowledgments... 325
Index.. 327

xiv

List of Figures

1. How the shells fit into z/OS... 3
2. The OMVS interface to the shell..6
3. The asynchronous terminal interface to the shell.. 6
4. z/OS UNIX System Services provides the user interfaces of both MVS and UNIX...................................... 7
5. Working interactively in the MVS and shell environments... 8
6. Switching temporarily to TSO/E command mode or subcommand mode.. 12
7. The z/OS shell's display screen when the shell is first invoked...13
8. The z/OS shell's display screen after input has been entered...14
9. A sample .tcsh file... 52
10. The OSHELL REXX exec.. 156
11. ISPF shell: The main panel... 158
12. End user's logical view of the file system...177
13. Organization of the file system... 177
14. Comparison of MVS data sets and the z/OS UNIX file system.. 180
15. Creating a new directory...194
16. Hard link: a new name for an existing file.. 203
17. Symbolic link: a new file... 203
18. External link: A new file.. 204
19. A sample file: comics.lst...207
20. Copying data between z/OS UNIX and MVS...251

 xv

xvi

List of Tables

1. Function key settings available in the z/OS shell... 15
2. Three ways to set the STEPLIB environment variable (z/OS shell)... 45
3. Three ways to set the STEPLIB environment variable (tcsh shell).. 58
4. Using the test command to examine the nature of a file... 118
5. Using the test command to compare the age of two files... 118
6. Using the test command to compare the values of two numbers... 118
7. Using the test command to compare two strings.. 118
8. Using the test command to test whether strings are empty..118
9. Comparison of running a background job from the shell and from MVS... 140
10. Requirements for absolute path names...182
11. Three-digit permissions specified in octal... 221
12. vi editor: Positioning the cursor..229
13. Portable characters: Escape sequences.. 309
14. Control characters: Escape sequences..310
15. Translation of selected escaped characters (BPXFX100)... 311
16. Translation of selected escaped characters (BPXFX111 and BPXFX211)... 312
17. Translation of selected escaped characters (BPXFX437, BPXFX450, BPXFX471, BPXFX473,

BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497)......................................312

 xvii

xviii

About this document

This document provides an introduction to the two shells that are available on z/OS UNIX System Services
(z/OS UNIX) — the z/OS shell and the tcsh shell.

This document provides the information you need to use the z/OS Shells and Utilities on an IBM® z/OS®

system. The Shells and Utilities and TSO/E (Time Sharing Option Extensions) provide commands for using
z/OS UNIX.

This document helps you use the functions specified in the POSIX.2 standard (IEEE Std 1003.2-1992 and
ISO/IEC 9945-1992 International Standard; Portable Operating System Interface [POSIX] Part 2: Shell
and Utilities). For convenience, it also describes other z/OS UNIX support services.

Who should use z/OS UNIX System Services User's Guide?
This document is for application programmers, systems programmers, and users working on a z/OS
system and using z/OS UNIX services or the z/OS shells.

This document assumes that readers are familiar with the z/OS system and with the information for z/OS
and its accompanying products.

What is in z/OS UNIX System Services User's Guide?
This document describes how to use the shells, the file system, and communication services. Using the
document, you can:

• Enter shell commands that request services from the system.
• Write shell scripts using the shell programming language; a shell script can be as powerful as a C-

language program.
• Run shell scripts and C language programs interactively (in the foreground), in the background, or in

batch.
• Switch easily between the shells and TSO/E.
• Move MVS™ data sets into the file system, or move files from the file system into MVS data sets.
• Enter shell commands or TSO/E commands from the shell command line.
• Create or edit a file in the file system.
• Manage your file system.

For a discussion of the z/OS UNIX shell commands, utilities, TSO/E commands, and file formats, see z/OS
UNIX System Services Command Reference.

Tasks that can be performed in more than one environment
There are some tasks that can be performed in more than one environment: in the shells, in TSO/E, or
perhaps in ISPF. If the same task can be performed in more than one environment, that is noted.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center (www.ibm.com/support/knowledgecenter/
SSLTBW/welcome).

© Copyright IBM Corp. 1996, 2018 xix

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

Discussion list

Customers and IBM participants also discuss z/OS UNIX on the mvs-oe discussion list. This list is
not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion, send a note to:

listserv@vm.marist.edu

Include the following line in the body of the note, substituting your given name and family name as
indicated:

subscribe mvs-oe given_name family_name

After you have been subscribed, you will receive further instructions on how to use the mailing list.

xx z/OS: UNIX System Services User's Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxi.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS UNIX System Services User's Guide,

SA23-2279-30
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1996, 2018 xxi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS UNIX for Version 2 Release 3

Changed

• These figures were updated to include the new /global directory:

– Figure 12 on page 177
– Figure 13 on page 177

Deleted

• Because the z/OS UNIX System Services website is no longer available, information about it was
deleted. Information about Tools and Toys was also deleted.

Summary of changes for z/OS UNIX for Version 2 Release 2 (V2R2)

Changed

• Additional information was added to “Naming files” on page 199.

z/OS Version 2 Release 1 summary of changes
See the Version 2 Release 1 (V2R1) versions of the following publications for all enhancements related to
z/OS V2R1:

• z/OS Migration
• z/OS Planning for Installation
• z/OS Summary of Message and Interface Changes
• z/OS Introduction and Release Guide

xxii z/OS: UNIX System Services User's Guide

Part 1. The z/OS shells
These topics provide an overview of the information relating to the z/OS shells.

© Copyright IBM Corp. 1996, 2018 1

2 z/OS: UNIX System Services User's Guide

Chapter 1. An introduction to the z/OS shells

There are two shells available for use on z/OS UNIX System Services:

• The z/OS shell.
• The tcsh shell.

The z/OS shell is modeled after the UNIX System V shell with some of the features found in the Korn shell.
As implemented for z/OS UNIX System Services, this shell conforms to POSIX standard 1003.2, which
has been adopted as ISO/IEC International Standard 9945-2: 1992.

The tcsh shell is an enhanced but compatible version of csh, the Berkeley UNIX C shell. It is a command
language interpreter usable as a login shell and as a shell script command processor.

Figure 1 on page 3 shows how these shells fit into z/OS.

POSIX-conforming

applications

z/OS

Shells and Utilities

XL C/C++

Compiler
Debugger

Runtime library with

POSIX.1 support and extensions

POSIX.1 z/OS UNIX System Services Support

z/OS Basic Control Program

Process Management

File System Communication

Figure 1: How the shells fit into z/OS

About shells
A shell is a command interpreter that you use to:

• Invoke shell commands or utilities that request services from the system.
• Write shell scripts using the shell programming language.
• Run shell scripts and C-language programs interactively (in the foreground), in the background, or in

batch.

Shell commands and utilities
Both the z/OS shell and the tcsh shell provide commands and utilities that give the user an efficient way
to request a range of services. In this topic, the term command is used to include both a command (a
directive to a shell to perform a specific task) and a utility (the name of a program callable by name from a
shell).

© Copyright IBM Corp. 1996, 2018 3

Shell commands often have options (also known as flags) that you can specify, and they usually take an
argument—such as the name of a file or directory. The format for specifying the command begins with the
command name, then the option or options, and finally the argument, if any. For example:

ls -a myfiles

ls is the command name, -a is the option, and myfiles is the argument.

This information describes various commands you can use to perform certain tasks; most of these are
shell commands, and some are TSO/E commands. This discussion highlights only certain functions of the
command. For complete information about each command and all its options, see z/OS UNIX System
Services Command Reference.

The locale in the shells
A locale specifies cultural and language characteristics of the z/OS UNIX environment for an application
program. Locale affects collation, date and time conventions, numeric and monetary formats, program
messages, yes and no prompts, and the hexadecimal encoding for the 13 variant characters whose
encoding varies on different EBCDIC code pages.

The shells and utilities support a variety of locales. See “Changing the locale in the shell” on page 40 for
information about changing the locale in the shells.

Daemon support
z/OS UNIX System Services provides daemons, such as cron, a batch scheduler, and inetd, which handles
rlogin requests.

• For information about each daemon that z/OS UNIX System Services provides, see z/OS UNIX System
Services Command Reference.

Running an X-Window application
If you are accessing the shell from a workstation or X-terminal running an X-Window server, you can run
an X-Window application from the shell. An X-Window application needs the TCP/IP address and display
identifier for your workstation.

The shell user
There are two categories of shell user: superuser and user. The superuser can do anything a user can, but
has special authority to perform certain additional tasks, such as mounting and unmounting a file system.
The superuser can access all z/OS UNIX services and all the files in the hierarchical file system.

Security
This information assumes that your system includes the RACF® security product. Instead of RACF, your
system could have an equivalent security product.

The systems programmer defines a shell user by assigning the user an OMVS user ID (UID) and group ID
(GID). These are numeric values associated with a TSO/E user ID; they are set in the RACF user profile and
group profile when a user is authorized to use z/OS UNIX services. The system uses the UID and GID to
identify the files that a user owns and the processes that a user runs. The UID identifies a user of z/OS
UNIX services. The GID is a unique number assigned to a group of related users.

As a user, you can control read, write, and execute access to your files by other users in your group or
outside of your group, by setting the permission bits associated with the files.

4 z/OS: UNIX System Services User's Guide

Accessing the shells — the choices
User's settings are initially configured with the z/OS shell as the default login shell. To display these
settings from TSO type:

LISTUSER USERNAME OMVS

The RACF settings for that user are displayed:

UID= 0000000012
 HOME= /shut/home/billyjc
 PROGRAM= /bin/sh
 CPUTIMEMAX= NONE
 ASSIZEMAX= NONE
 FILEPROCMAX= NONE
 PROCUSERMAX= NONE
 THREADSMAX= NONE
 MMAPAREAMAX= NONE
 READY

The PROGRAM line refers to the user's login shell. If it is /bin/sh, the login shell is set to the z/OS shell.
If it is /bin/tcsh, the login shell is the tcsh shell. To change a user's default login shell from the z/OS
shell to the tcsh shell, issue this command:

ALTUSER USERNAME OMVS(PROGRAM('/bin/tcsh'))

To change a user's default login shell from the tcsh shell to the z/OS shell, type:

ALTUSER USERNAME OMVS(PROGRAM('/bin/sh'))

Terminal emulators
z/OS provides several terminal emulators that you can use to access the shells:

• The TSO/E OMVS command, a 3270 terminal interface.
• The rlogin command, an asynchronous terminal interface.
• The telnet command, an asynchronous terminal interface.

When you select a terminal emulator, consider these key points:

• Code page conversion: By default, z/OS UNIX System Services operates in the POSIX locale (also known
as the C locale) using code page IBM-1047, but it can operate in other locales, including double-byte
locales. Unless you change the locale in the shell so that the code page used by the shell matches the
code page used by the workstation for the z/OS UNIX session, a terminal emulator must perform some
code page conversion. Mechanisms are provided to specify the conversion required for your situation:

– The OMVS command has the CONVERT parameter to specify the conversion between the code page
used at your workstation and the code page used in the shell.

– rlogin and telnet convert from ASCII ISO8859-1 to EBCDIC IBM-1047 by default. Once you are
logged in to the shell, you can use the chcp to select other code pages to convert between for the
session.

• Number of sessions: Some terminal emulators allow multiple interactive sessions for the same user.
This can be accomplished by multiple logins or by using an emulator that allows multiple sessions with
one login.

• File editing: With the OMVS emulator, you can use the ISPF editor. For the other terminal emulators, vi
is the editor of choice.

• Shell mode: rlogin and telnet provide both line mode (also known as canonical mode) and raw
mode, while OMVS operates in line mode only. Line mode is sufficient for most shell utilities. However,
the full function of certain useful utilities, such as vi and the command line editing feature of the shell,
are available only in raw mode.

An introduction to the z/OS shells 5

When you first login to the shell, you are in line mode. Depending on your means of access, you may
then be able to use utilities that require raw mode or run an X-Window application.
line mode

Your input is processed after you press <Enter>.
raw mode

Each character is processed as you type it.
graphical mode

A graphical user interface for X-Window applications

OMVS
command

Terminal Interface

Shell

z

z

z

One login for an ID, with multiple sessions.

Line mode only

Code page conversion between the terminal
and the shell: CONVERT keyword on OMVS
command controls this.

z TSO/E:You can switch to TSO/E from the shell.
You can run TSO/E commands from the shell.

z

z

z

ISPF:You can use the ISPF shell to perform
z/OS UNIX System tasks

Editors: ISPF, ed, or sed

DBCS support

Figure 2: The OMVS interface to the shell

rlogin
command

telnet
command

Terminal Interface

Shell

z

z

z

Multiple logins for an ID, with one session
for each login

Line mode and raw mode

z TSO/E:You cannot switch to TSO/E from
the shell.You can run TSO/E commands
from the shell.

z

z

z

ISPF:You cannot use the ISPF shell.

Editors: vi, ed, or sed

DBCS support

Code page conversion between the terminal
and the shell : automatic conversion between
code pages ISO8859-1 and IBM-1047.
In the shell, you can use the chcp shell
command to set the code pages.

Figure 3: The asynchronous terminal interface to the shell

Interoperability between the shells and MVS

6 z/OS: UNIX System Services User's Guide

TSO/E
panels

MVS-like
interface

UNIX-like
interface

Shell

Services

Figure 4: z/OS UNIX System Services provides the user interfaces of both MVS and UNIX

There is a high degree of interoperability between MVS and the z/OS shells:

• You can move data between MVS data sets and the z/OS UNIX file system. You can copy or move MVS
data sets into z/OS UNIX files; likewise, you can copy or move z/OS UNIX files into MVS data sets.

• To work with z/OS UNIX files, you can use TSO/E commands or shell commands. If you have access to
ISPF, you can use the panel interface of the ISPF shell. For example, you can create a directory with the
TSO/E MKDIR command, or the shell mkdir command, or the ISPF shell.

• You can issue TSO/E commands from the shell command line, from a shell script, or from a program.
See “Using commands to work with directories and files” on page 184 for a list of TSO/E commands you
can use to work with the file system.

• You can write job control language (JCL) that includes shell commands.
• To edit z/OS UNIX files, you can use the ISPF/PDF full-screen editor or one of the editors available in the

shell.
• REXX programs can access kernel callable services by using z/OS UNIX extensions to the REstructured

eXtended eXecutor (REXX) language. You can run REXX programs using these extensions from TSO/E,
batch, the shell, or a C program.

• Use the OSHELL REXX exec to run a non-interactive shell command or shell script from the TSO/E
READY prompt and display the output to your terminal. This exec is shipped with z/OS UNIX System
Services.

Parallels between the MVS environment and the shell environment
Figure 5 on page 8 indicates how basic programming tasks are performed in the MVS environment and
in the shell environment.

An interactive user who uses the OMVS command to access the shell can switch back and forth between
the shell and TSO/E, the interactive interface to MVS.

• Programmers whose primary interactive computing environment is a UNIX or AIX® workstation find the
shell programming environment familiar.

• Programmers whose primary interactive computing environment is TSO/E and ISPF can do much of
their work in that environment.

An introduction to the z/OS shells 7

DFSMShsm
ISPF

Debugging

Shell Scripts & REXX

ActivityMVS Environment Shell Environment

TSO Test
Inspect

Compilers,
LINK

Submit Job (TSO)

SDSF

ISPF

CLIST & REXX (TSO) Programming for
Everyday Tasks

Background
Job

Job Control

Editing

Programming

Data
Management

ed, vi

ps,
jobs,
kill

c89,
make,
ar

dbx

tar,
cpio,
pax

Command &

Figure 5: Working interactively in the MVS and shell environments

Programming for everyday tasks
The shell programming environment with its shell scripts provides function similar to the TSO/E
environment with its command lists (CLISTs) and the REstructured eXtended eXecutor (REXX) execs.

The CLIST language is a high-level interpreter language that lets you work efficiently with TSO/E. A CLIST
is a program, or command procedure, that performs a given task or group of tasks. CLISTs can handle any
number of tasks, from running multiple TSO/E commands to running programs written in other languages.
CLISTs can run only in a TSO/E environment. For a discussion of CLISTs, see z/OS TSO/E CLISTs.

The REXX language is a high-level interpreter language that enables you to write programs in a clear and
structured way. You can use the REXX language to write programs called REXX programs, or REXX execs,
that perform given tasks or groups of tasks. REXX programs can run in any MVS address space. You can
run REXX programs that call z/OS UNIX services in TSO/E, batch, in the shell environment, or from a C
program. For more information about writing REXX programs, see z/OS TSO/E REXX User's Guide, z/OS
TSO/E REXX Reference, and z/OS Using REXX and z/OS UNIX System Services.

In the shells, command processing is similar to command processing for CLISTs. You can write executable
shell scripts (a sequence of shell commands stored in a text file) to perform many programming tasks.
They can run in any dubbed MVS address space. They can be run interactively, using cron, or using
BPXBATCH. With its commands and utilities, the shell provides a rich programming environment.

Editing
In MVS, you can edit z/OS UNIX files by using the TSO/E OEDIT command to invoke ISPF File Edit or by
selecting File Edit on the ISPF menu, if it is installed.

8 z/OS: UNIX System Services User's Guide

In a shell, you can use the ed and sed editors for editing z/OS UNIX files. You can use the oedit shell
command to invoke ISPF File Edit. If you use rlogin or telnet to login to the shell, you can also use the
vi editor.

Job control
In MVS, you can use the System Display and Search Facility (SDSF) to monitor and control a job. You can
also use the TSO/E CANCEL, STATUS, and OUTPUT commands.

In the shell, you use the ps command or the jobs command to check the status of a job, and the kill
command to end a job before it completes.

Additionally, in the shell you can stop, or suspend, a foreground job, and then enter the bg command to
run it in the background or the fg command to start it back up in the foreground.

Background jobs
In MVS, you write a background job in job control language (JCL) and start it with the TSO/E SUBMIT
command.

In the shell, you start a background job by typing an ampersand (&) at the end of the command line.

Programming
In MVS, you use the z/OS XL C/C++ compiler and the linkage editor to create a traditional z/OS XL C/C++
application program as a load module or to create a z/OS XL C/C++ application program as an executable
file or a load module.

In the shell, you can use the c89 or cc or c++ command to compile and link-edit a z/OS UNIX program,
creating an executable file. The make command is available for building applications, and lex and yacc
are available for developing applications.

Debugging
Under TSO/E, for traditional z/OS XL C/C++ application programs, TSO/E Test and Inspect facilities are
available for debugging. You can use TSO/E TEST for z/OS UNIX application programs that do not use
fork() or exec().

In the shell, dbx is the debugging facility for z/OS XL C/C++ programs. With dbx, you can debug
multithreaded applications at the C-source level or at the machine level. Support for multithreaded
applications gives you the ability to:

• Debug or display information about the following objects related to multithreaded applications: threads,
mutexes, and condition variables.

• Control program execution by holding and releasing individual threads

The dbx debugger provides support for recognizing, displaying, and modifying program variables and
constants that include double-byte character set (DBCS) characters.

The dbx debugger also provides core dump analysis when run in dump processing mode.

Data management
In MVS, the storage administrator uses Data Facility System-Managed Storage Hierarchical Storage
Manager (DFSMShsm) to automatically back up and archive hierarchical file systems.

In the shell, you can use tar, cpio, and pax to read or write an archive file in the file system.

You can copy archive files to an MVS data set, and then to tape. You can retrieve archive files from a tape
into an MVS data set and then copy them into the file system.

An introduction to the z/OS shells 9

10 z/OS: UNIX System Services User's Guide

Chapter 2. OMVS, a 3270 terminal interface to the
z/OS shell

The explanations and examples in this topic assume that the z/OS shell has been set up in your profile.
The information presented here is primarily directed towards users of the z/OS shell.

The TSO/E OMVS command is one method of accessing the z/OS shell. It provides a 3270 terminal
interface to the shell. To use the OMVS interface to the shell, you must be working at a 3270 terminal or a
computer with 3270 emulation.

You issue the OMVS command from TSO/E:

• In an SNA network, remote users access TSO/E through VTAM®.
• In a TCP/IP network, remote users that have the Telnet 3270 client function access TSO/E by entering

the TN3270 command. See the TCP/IP documentation for your system or the documentation for your
computer's 3270 emulation.

For information about using an asynchronous terminal interface to the shell, see Chapter 3, “The
asynchronous terminal interface to the shells,” on page 31.

Differences from a UNIX or AIX environment
If you come from a UNIX or AIX background, you will encounter some differences when you begin to use
the OMVS interface to the shell. The 3270-type terminal interface may surprise you! For example:

OMVS interface For more information

The 3270 interface operates in line mode (also known as
canonical mode). You type data on a command line and no
data is transmitted until you press the <Enter> key.

“Working in line mode” on page 14

The 3270 interface has function keys for various tasks such as
scrolling through output, running TSO/E commands, and so
on.

“Determining function key settings and
the escape character” on page 15

The OMVS interface does not have a control key. Instead of
using a <Ctrl> key to type control sequences (for example,
<Ctrl-D>), you use the Control function key or a
multicharacter escape-key sequence.

“Typing escape sequences in the shell”
on page 19

With the OMVS interface, you can edit z/OS UNIX files using
the ISPF editor or the ed editor. Because this interface runs in
line mode, you cannot use the vi editor.

Chapter 19, “Editing files,” on page 227

Delayed display of output: If a command you are running does
not produce output for more than a few seconds, you will
need to repeatedly press the Refresh key to display the output
as it is produced.

“Why isn't your output displayed on the
screen?” on page 14

Invoking the shell
To invoke the z/OS shell, log on to TSO/E and enter the TSO/E OMVS command. Once you are working in a
shell session, you can switch to TSO/E command mode or you can switch to subcommand mode.

© Copyright IBM Corp. 1996, 2018 11

S h e l l

$ - - - - - -

- - - -

$

= = = >

- - - - - - - - - - - -

- - - - - - - - - - - -

E n t e r a T S O / E c o m m a n d

S u b c o m m a n d = = = >

- - - - - - - - -

- - - - - - - - -

S u b c o m m a n d

T S O / E

Figure 6: Switching temporarily to TSO/E command mode or subcommand mode

To invoke the shell:

1. Log on to TSO/E with your TSO/E user ID and password.
2. At the TSO/E READY prompt, enter the OMVS command. You do not need to supply a password when

invoking the shell.

The systems programmer might have set up your TSO/E user's logon to invoke the shell automatically. In
that case, you do not need to perform step 2.

You can start multiple shell sessions simultaneously when you log into the shell, and you can start an
additional shell session at any time during a shell session by using the OPEN subcommand. You can
switch from session to session, using a function key or a subcommand.

Changing options on the OMVS command
The OMVS command provides an interface to the shell; for example, the layout of the screen and the
processing of the function keys.

You can create a customized version of the OMVS command for your own use, by writing a simple REXX
program or CLIST that specifies certain keywords on the command. For information about how to do this,
see “Customizing the OMVS interface” on page 23 and “An example of customizing the OMVS command”
on page 23.

Understanding the shell screen
When you start the shell, you see the panel in Figure 7 on page 13.

12 z/OS: UNIX System Services User's Guide

 IBM
 Licensed Material - Property of IBM
 5647-A01 (C) Copyright IBM Corp. 1993, 2013
 (C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
 (C) Copyright Software Development Group, University of Waterloo, 1989.

 U.S. Government users - Restricted Rights
 Use, duplication, or disclosure restricted by
GSA-ADP schedule contract with IBM Corp.

 IBM is a registered trademark of the IBM Corp.

 $

===>
 RUNNING
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
 7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 7: The z/OS shell's display screen when the shell is first invoked

The $ prompt is an indication from the shell that it is ready to accept input, which you type at the
command line (===>). For a superuser, the default prompt is a #.

You can define a different prompt in your $HOME/.profile file, if you want to. (See Chapter 4,
“Customizing the z/OS shell,” on page 35 for more information about your $HOME/.profile file.)

You see:

• The command line (===>), used for input.
• The current function key settings and the current escape character assignments. You can turn off the

function key display by typing the NOPF subcommand and turn on the display by typing the PF
subcommand; alternatively, you can customize a function key to control the display of the function key
settings. See “Customizing the OMVS interface” on page 23 for details on customizing function keys.

Note: The figures in this topic show the default function key settings.

• The status indicator in the right-hand corner, just above the function key lines. When you first enter the
shell, the status indicator is RUNNING. This indicator lets you know the status of your session; for
example, if an application is running or if the shell session is ready for input.

• The session number, in angle brackets, following the status indicator. The session number is displayed if
there is more than one session active.

Figure 8 on page 14 shows how a screen would look after some input had been entered.

OMVS, a 3270 terminal interface to the z/OS shell 13

$ ls -l
total 7
drwxr-xr-x 2 SMITHA 0 0 Dec 3 04:25 bin
drwxr-xr-x 2 SMITHA 0 0 Nov 19 15:16 doc
-rw-rwxrwx 2 SMITHA 0 250 Nov 17 23:07 etc
-rw-r--r-- 2 SMITHA 0 17 Nov 17 23:07 fora
-rw-r--r-- 5 SMITHA 0 1605 Dec 3 16:38 port
-rw-r--r-- 2 SMITHA 0 472 Nov 17 23:15 script
drwxr-xr-x 2 SMITHA 0 0 Nov 17 23:07 src
drwxr-xr-x 15 SMITHA 0 0 Dec 3 20:37 projecta
$

 ===>
 INPUT
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
 7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 8: The z/OS shell's display screen after input has been entered

At the top of the screen, $ is the prompt and ls -l is the command that was entered. Beneath that is the
output from the command. When a command completes, a $ prompt is displayed, indicating that you can
enter another command on the command line.

If you make an error entering a command or you are running a shell script or program that ends in error,
the error message is displayed in the output area. Some error messages are displayed after the last
output line. Others—for example, error messages issued in subcommand mode—appear at the very top of
the panel followed by a separator line. To clear an error message displayed at the top of the panel above a
separator line, press <Enter> without typing any input.

Working in line mode
Because you are working in 3270 mode, what you type on the command line is processed in line mode
(also known as canonical mode). This means your input is not processed until you press <Enter>.

• To enter input, type it at the command line (===>) and press <Enter>.
• To see your echoed input data or any output written by an application, look at the screen. The first line

of output is displayed, and then each subsequent line of output is displayed under it.

After the screen fills up with output lines, the older output lines scroll upward, out of view, as new
output lines are displayed . You can, however, use function keys to scroll the output backward and
forward.

Why isn't your output displayed on the screen?
After you type a command and press <Enter>, the status of your session is displayed in the lower right-
hand corner of your screen as RUNNING. After a short time, the status indicator automatically changes to
INPUT; this means the shell session is ready for input and will not send any more output or messages to
the display screen.

At times you may find that the status indicator changes to INPUT before you have received any or all of
your output. Don't worry—the shell is producing output and storing it in a buffer. Just press the Refresh
function key and the shell will display more output on your screen. (If you don't have a Refresh function
key, you can press a <Clear> key, <PA2>, or <PA3>.)

The reason for this behavior is that TSO/VTAM provides no way to wait for keyboard input and TTY output
at the same time under TSO.

14 z/OS: UNIX System Services User's Guide

Determining function key settings and the escape character
The shell has function keys that you can use for certain tasks, instead of typing commands. To determine
your function key settings and escape character assignments, look at the following display:

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
 7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

The function key functions
Table 1 on page 15 describes all the functions available for function keys, and shows which of those
functions are assigned by default to keys. Function keys 13 to 24 are set to the same values as function
keys 1 to 12. You can change the default function key settings. For example, you might want a Control
function key for typing escape sequences.

You can perform the same actions with either a function key or a subcommand; the term you see under
the column Function/Subcommand can be entered as a subcommand also. See “Running a subcommand”
on page 22 for more information about subcommands.

In the first column, you see the default key assignment for a function. If a function is not assigned to a key
by default, there is no entry in the first column. You can assign a function to a key by customizing your
invocation of the OMVS command; see “Function key settings (PFn)” on page 25 for more information.

Table 1: Function key settings available in the z/OS shell.

Default setting Function or
subcommand

Description

<F1> <F13> HELP Displays a help panel that explains the TSO/E OMVS command
and the three modes you can work in: shell, subcommand, and
TSO/E.

<F2> <F14> SUBCMD Processes an OMVS subcommand. A subcommand is a
command that is passed to the OMVS command processor
(instead of the shell). Most subcommands are used to control, or
temporarily change, the OMVS interface. You can either enter a
subcommand from the shell command line or switch to
subcommand mode to do it.

To run a subcommand from the shell command line, type the
subcommand and press this function key.

To leave the shell session and enter subcommand mode, press
this function key when the shell command line is empty. You can
type the OMVS subcommands at the command line in
subcommand mode. To resume working in the shell, press the
Return function key.

<F3> <F15> HLPRETRN or
RETURN

If you are viewing help information, pressing this key removes
the help information from the screen. If you are in subcommand
mode, pressing this key returns you to the shell session. (Refer
to “Switching to subcommand mode” on page 22 for a
discussion of subcommand mode.)

<F4> <F16> TOP Scrolls displayed data back to a screen of the oldest available
output, or, in help, back to the first panel.

<F5> <F17> BOTTOM Scrolls displayed data to a screen of the most recent output, or,
in help, to the final panel.

OMVS, a 3270 terminal interface to the z/OS shell 15

Table 1: Function key settings available in the z/OS shell. (continued)

Default setting Function or
subcommand

Description

<F6> <F18> TSO You have the choice of switching to TSO/E command mode to
enter a TSO/E command or running the TSO/E command from
the shell command line.

To switch to TSO/E command mode, press <F6>. To resume
working in the shell, press <PA1>.

To run a TSO/E command from the shell command line, select
one of these options:

• Type the command and press the TSO function key.
• Use the tso shell command to run the TSO/E command

If you entered the OMVS command from ISPF, you cannot enter
ISPF as a TSO/E command from the shell command line. You
can, however, enter the ISHELL command.

When the TSO/E command completes, typically *** is displayed
on the screen. Press <Enter> or <Clear> to return to the shell.

<F7> <F19> BACKSCR Scrolls the displayed output backward, a screen at a time. The
scrolling ends when you reach the oldest available saved line in
a stack of saved output lines.

<F8> <F20> SCROLL Scrolls the output display a full screen forward.

<F9> <F21> NEXTSESS Displays the next session whose session number is higher than
that of the session currently displayed. However, if the highest-
numbered session is displayed, the lowest-numbered session
will be displayed.

<F10> <F22> REFRESH Updates the screen with new data from the shell session. Use
this function key if the display of output (for example, output
from a command you issued) is incomplete , but the session is
now displaying INPUT status.

<F11> <F23> FWDRETR Used with <F12> to retrieve commands from the stack of saved
input lines. If you press <F12> one too many times and go past
the line you want, you can press <F11> to display the line that
was previously retrieved by <F12>.

<F12> <F24> RETRIEVE Retrieves the most recently entered input line from a stack of
saved input lines. This key starts retrieving with the most recent
in the stack of saved lines and works down to the oldest
available.

 ALARM Toggles the setting for the 3270 alarm to sound when the shell
writes a <BEL> character. Some applications use an alarm to
alert the user to particular events. The default setting is to sound
the alarm. You can select a key to switch it off and on.

 AUTOSCR Toggles the setting for autoscrolling of input and output that is
written to the screen. The default setting is to autoscroll; you
can select a key to switch it off and on.

CLOSE Ends the shell session currently displayed. Close provides the
same function as the Quit function key.

16 z/OS: UNIX System Services User's Guide

Table 1: Function key settings available in the z/OS shell. (continued)

Default setting Function or
subcommand

Description

 CONTROL Treats a character on the command line as part of an escape
sequence, and does not append a <newline> character to the
sequence. For example, if you type d on the command line and
press the Control function key, the system processes the d as
the EBCDIC equivalent of the ASCII control sequence <Ctrl-D>.

ECHO Toggles the automatic hiding and display of input. If pressed
while an application has control over the display of input, the
application no longer controls it. If pressed while the application
does not control the display of input, the application is given
control.

See the description of the Hide function key.

HALFSCR Scrolls forward half of the currently displayed output.

 HIDE Toggles the hiding and display of input.

If you are using OMVS in ECHO mode, pressing this key overrides
the visibility asked for by an application, for the next input only.
In NOECHO mode, if the input area is not hidden, pressing this
key hides the input area for the next input only. If the input area
is already hidden, pressing this key makes the input area visible.

 NO Deactivates a function key so that it performs no function.

 NOALARM Performs the same function as Alarm.

 NOAUTO Performs the same function as Auto.

 NOECHO Performs the same function as Echo.

 NOHIDE Performs the same function as Hide.

 NOPFSHOW Toggles the display of function key settings. The default setting
is to display the settings; you can select a key to switch the
display off and on.

 PFSHOW Performs the same function as NoPFShow.

OPEN Starts another shell session and automatically switches to it.
The session is assigned the next unused session number.

PREVSESS Displays the next-lower-numbered session. However, if the
lowest-numbered session is currently displayed, the highest-
numbered session will be displayed.

 QUIT Ends the current session, and displays the next-lower-numbered
session. However, if the lowest-numbered session is currently
displayed, the next-higher-numbered session is displayed.

If only one session is active, Quit causes the OMVS command to
quit. The workstation returns to TSO/E, and the shell stops
processing.

OMVS, a 3270 terminal interface to the z/OS shell 17

Table 1: Function key settings available in the z/OS shell. (continued)

Default setting Function or
subcommand

Description

QUITALL Ends all active shell sessions. QuitAll causes the OMVS
command to quit. The workstation returns to TSO/E.

Note: If the OMVS interface is running in SHAREAS mode
(shared address space) and you quit all sessions (QuitAll or Quit
if there is just one session), the shell process ends immediately.

The escape character
ESC=¢

An escape sequence produces an EBCDIC version of the ASCII control sequence. (For example, the
z/OS UNIX <EscChar-D> corresponds to the ASCII <Ctrl-D>.) If you do not use a Control function key
to enter escape sequences, you will need to use an escape character. When you type an escape
character followed by a second character and press Enter, the second character is converted into a
different character before it is passed to the shell.

The default escape character depends on the character conversion table specified with the CONVERT
keyword. For more information, see the OMVS command description in z/OS UNIX System Services
Command Reference.

There can be up to eight escape characters defined and displayed on the screen; you can use any one
of them as an escape character. For example, three are displayed as follows:

ESC=¢`%

The notation EscChar coupled with another letter (for example, <EscChar-D>) indicates an escape
sequence.

For more information about escape sequences, see “Typing escape sequences in the shell” on page
19.

Entering a shell command
You type shell commands on the shell command line (===>) and press <Enter> to pass them to the shell.

Customizing the variant characters on your keyboard
If the shell is using a locale generated with code pages IBM-104 IBM-1027, or IBM-939, an application
programmer needs to be concerned about variant characters in the POSIX portable character set whose
encoding may vary from other EBCDIC code pages. For example, the encodings for the square brackets do
not match on code pages IBM-037 and IBM-1047:

Left square bracket: [(X'AD' on IBM-1047)
Right square bracket:] (X'BD' on IBM-1047)

You may want to customize the encodings for those keys on your keyboard. See Appendix C, “Code page
conversion when the shell and MVS have different locales,” on page 305 for more information on this
topic.

Entering a long shell command
If you are typing a long command that will not fit on the command line, you can use the \ (backslash)
continuation character at the end of the first line. When you then press <Enter>, the command line is
cleared so that you can continue typing. The line you typed prior to the backslash is displayed in the

18 z/OS: UNIX System Services User's Guide

output area, and beneath it the shell prompt changes to > to indicate that you are continuing a command.
For example:

$ cat /usr/macneil/uts/mydir/mydata\
>

===> /applprog/dbprog/dbget.c
 RUNNING

While the shell is processing your command, it displays the RUNNING status indicator.

Where's the command output? If your output has not yet been displayed when the status changes to
INPUT, press the Refresh function key to see the output.

Entering a shell command from TSO/E
You can use the OSHELL REXX exec to run a z/OS shell command from the TSO/E READY prompt and
display the output to your terminal. The syntax is:

oshell shell_command

With this exec, do not use an & to run a shell command in the background. See “OSHELL: Running a shell
command from the TSO/E READY prompt” on page 155 for more information.

Interrupting a shell command
If you want to interrupt a command and stop it from completing, type <EscChar-C> or type c and press
the Control function key (if you have a function key customized to perform the Control function; see
“Determining function key settings and the escape character” on page 15).

Typing escape sequences in the shell
An escape sequence produces an EBCDIC version of the ASCII control sequence. (For example, the z/OS
UNIX <EscChar-D> corresponds to the ASCII <Ctrl-D>.) You can use escape sequences to type the
following characters:

• Portable characters not included on your keyboard; see Appendix D, “Escape sequences for a 3270
keyboard,” on page 309 for these sequences.

• Control characters that are normally available on ASCII workstations, but not EBCDIC ones; see
Appendix D, “Escape sequences for a 3270 keyboard,” on page 309 for these sequences.

In this topic, the notation EscChar coupled with another letter (for example, <EscChar-D>) indicates an
escape sequence, corresponding to an ASCII control sequence. You can type an escape sequence in
either of these ways:

• Type a letter on the command line and press the Control function key if you have one defined. The
Control function key treats the character on the command line as if it were preceded by an escape
character, and it does not append a <newline> character.

OMVS, a 3270 terminal interface to the z/OS shell 19

For example, to exit the shell, you type d on the command line and press the Control function key.

To use a Control function key, you must customize the OMVS command with a key setting for that
function.

• Type an escape character sequence, beginning with one of the escape characters. After you type the
two characters in sequence and press <Enter>, the system translates the two characters into a third
character. For information on how to customize your keyboard for typing an escape sequence, see
“Keyboard remapping” on page 20.

Suppressing the newline character
When you press <Enter>, a <newline> character is automatically appended to the characters you typed.
For certain UNIX applications, you may want to suppress the automatic <newline> character appended
when you press <Enter>.

If you use the Control function key to input an escape sequence, no <newline> character is appended.
However, if you use an escape character to input an escape sequence, a <newline> character is appended
to the sequence. To suppress the <newline> character, add an escape character at the end of the input
and press <Enter>.

For example, in the shell, the two-character EBCDIC sequence <EscChar-D> is the equivalent of the ASCII
control sequence <Ctrl-D>. To enter only an <EscChar-D> with no final <newline>, type the string
<EscChar-D-EscChar> on the command line, and press <Enter>; an example is shown as follows:

===> ¢d¢
 INPUT <3>
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
 7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Keyboard remapping
With most terminal emulators, you can use the keyboard remapping function to define one key to
generate a multikey sequence. For example, you could define the <D> key so that it generates <EscChar-
D-EscChar-Enter> when the <Ctrl> key is pressed in sequence with it. Thus, the sequence <Ctrl-D> acts
like the ASCII sequence <Ctrl-D>.

Determining your session status
To find out the status of your session, look in the lower right-hand corner of the screen. A status indicator
and shell session number (if more than one session has been started) are displayed. The session number
identifies the session displayed on your screen.

 INPUT <1>
 5=Bottom 6=TSO
 11=FwdRetr 12=Retrieve

The status indicators are:
INPUT

Indicates that the shell is ready for input and will not send any more output to the display screen. If
your output has not yet been displayed when the status changes to INPUT, press the Refresh function
key to see more output.

RUNNING
Indicates that the workstation and shell are being polled, or that an application program is running.
After the polling completes, the indicator changes.

MORE...
Indicates that the screen is full of output and there is more output waiting to be displayed. To scroll
the screen, do one of the following:

20 z/OS: UNIX System Services User's Guide

• Press the <Clear> key (or combination of keys, depending on your keyboard)
• Press the Scroll, HalfScr, or Bottom function key.

INPUT HIDDEN
Indicates that you have pressed a function key that will turn off the display of any input that you type.
Typically, this function is used for typing in secure data. Once you press <Enter>, any further input is
displayed.

HIDDEN is a short form of INPUT HIDDEN, used when it is combined with other status indicators,
such as:

• HIDDEN/MORE
• HIDDEN/INPUT
• HIDDEN/NOT ACCEPTED
• HIDDEN/NOTACC/MORE
• HIDDEN/NOTACC/INPUT

NOT ACCEPTED
Indicates that the application or shell is hung and not accepting any input you enter. Try using a
subcommand to interrupt the application.

NOTACC is a short form of NOT ACCEPTED, used when it is combined with other status indicators,
such as:

• HIDDEN/NOTACC/MORE
• HIDDEN/NOTACC/INPUT

NOT ACCEPTED/MORE...
Indicates that the application is not accepting any input you enter and that there is more output
waiting to be displayed. Scroll the screen to clear it before trying to reenter the input. To scroll the
screen, do one of the following:

• Press the <Clear> key (or combination of keys, depending on your keyboard)
• Press the Scroll, HalfScr, or Bottom function key.

SUBCOMMAND
Indicates that you are working in subcommand mode.

Scrolling through output
You can scroll output forward and backward using:

• Function keys
• Cursor scrolling
• Scrolling subcommands

Using function keys or subcommands
There are five scrolling function keys that you can use during a shell session and in subcommand mode:

• BackScr
• Bottom
• HalfScr
• Scroll
• Top

These are discussed in Table 1 on page 15.

OMVS, a 3270 terminal interface to the z/OS shell 21

You can use the TOP, BOTTOM, SCROLL, BACKSCR, and HALFSCR subcommands to scroll output. They
produce the same results as their corresponding function keys (see Table 1 on page 15).

Using cursor scrolling
Cursor scrolling gives you better control over the scrolling action. You place your cursor on a line in the
output and then press one of these function keys or type the corresponding subcommand:
BackScr

Positions the output line containing the cursor at the bottom of the output displayed on the screen.

If the output partially fills the screen and the cursor is positioned below the last line of output, the
empty line with the cursor is displayed .

HalfScr
Positions the output line containing the cursor near the center of the output displayed on the screen.
This is similar to a partial scroll forward or backward.

If the output partially fills the screen and the cursor is positioned below the last line of output, the
empty line with the cursor is displayed near the center of the screen.

Scroll
Positions the output line containing the cursor at the top of the output displayed on the screen.

If the output partially fills the screen and the cursor is positioned below the last line of output, the last
line of output is displayed at the top of the screen.

Running a subcommand
A subcommand is a command that is passed to the OMVS command processor (instead of to the shell).
Most subcommands are used to control, or temporarily change, the OMVS interface. You can issue a
subcommand in two ways:

• Type the subcommand on the shell command line and press the Subcommand function key, if you have
one defined.

• Switch to subcommand mode and enter the subcommand.

The names of the subcommands match the names of the functions listed in Table 1 on page 15. Some
subcommands have aliases; for information on the subcommands and their aliases, see the OMVS
command description in z/OS UNIX System Services Command Reference.

You can enter the subcommands in uppercase, lowercase, or mixed-case letters.

Switching to subcommand mode
Instead of using the Subcommand function key to run a subcommand, you can switch to subcommand
mode to enter it. To switch to subcommand mode, press the SubCmd function key when the shell
command line is empty. In subcommand mode, the screen appears as it did in the shell, except that in the
lower right-hand corner the status displayed is SUBCOMMAND. Existing output from the shell is displayed at
the top of the screen, and any new output is displayed as it is available.

When you switch to subcommand mode, the command prompt changes to OMVS Subcommand ==>.

Using multiple sessions
You can run more than one shell session concurrently. When you have more than one session active, the
sessions are numbered and the identifying number for a session is displayed next to the status indicator.

22 z/OS: UNIX System Services User's Guide

Starting sessions
To start additional sessions, you can:

• Use the SESSIONS keyword on the OMVS command to specify the number of sessions you want started
automatically when you log into the shell. By writing a small REXX program or CLIST, you can customize
your invocation of the OMVS command so that every time you log into the shell multiple sessions are
started.

• Use the OPEN subcommand during a session. This starts another shell session and automatically
switches to it. The session is automatically assigned the next unused session number.

Switching between sessions
You can use function keys or subcommands to switch between sessions:

• NextSess is the default setting for <F9>. If you wish, you can customize an additional key for the
PrevSess setting. See Table 1 on page 15 for a discussion of these functions.

• The NEXTSESS and PREVSESS subcommands perform the same as the function keys.

Customizing the OMVS interface
You can select the keywords you want to use when you enter the TSO/E OMVS command:

ALARM | NOALARM
AUTOSCROLL | NOAUTOSCROLL
CONVERT()
DBCS | NODBCS
DEBUG()
ECHO | NOECHO
ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION | ENTER | NO | PA1 | PA3 | PF1
 … PF24 | SEL)
ESCAPE()
HIDE | NOHIDE
LINES()
PF()
PFSHOW | NOPFSHOW
RUNOPTS()
SESSIONS()
SHAREAS | NOSHAREAS
WRAPDEBUG()

An example of customizing the OMVS command
To invoke the OMVS command to:

• Set function key 1 as the Control function key
• Start three sessions
• Not use a shared address space

Enter:

omvs pf1(control) sessions(3) noshareas

By writing a small REXX program or CLIST, you can customize your selection of keywords on the TSO/E
OMVS command. If you intend to use these settings every time you enter the command, you could:

1. Write a REXX program that runs the OMVS command with the customized keywords. For example, here
is a REXX program called MYOMVS:

/* REXX */
P = PROMPT("ON"); /* Don't suppress prompting */
"omvs pf1(control) sessions(3) NOSHAREAS";
X = PROMPT(P); /* Restore original prompting state */
Return;

OMVS, a 3270 terminal interface to the z/OS shell 23

The use of the REXX function PROMPT() is required to prevent prompts from being suppressed.
Otherwise, TSO/E commands cannot prompt you for additional information when the commands are
issued during a shell session.

2. Install the exec in a data set that is part of either the SYSPROC or SYSEXEC concatenation.
3. When you log on to TSO/E, at the READY prompt you enter MYOMVS and the exec calls MYOMVS, your

customized OMVS command. Your changes override the default settings.

For more discussion of the syntax of the OMVS command and its customizable keywords, see the OMVS
command description in z/OS UNIX System Services Command Reference.

The alarm setting (ALARM | NOALARM)
Some applications sound an alarm to alert the user to particular events. To change the default alarm
setting (which allows it to sound), use the NOALARM keyword.

Autoscrolling (AUTOSCROLL | NOAUTOSCROLL)
Automatic scrolling of input and output written to the screen is the default. Specify NOAUTOSCROLL to
prevent the automatic scrolling.

If an application writes a <form-feed> character with no following data to a terminal and OMVS is in
AUTOSCROLL mode, the screen is cleared.

The character conversion table (CONVERT)
There are both APL and non-APL character conversion tables. The IBM-supplied default is a null
conversion table, but the systems programmer can select a different default for the OMVS command to
use. If you do not want to use the default table, you can specify a table name with the CONVERT keyword.
See the OMVS command description in z/OS UNIX System Services Command Reference for more details.

To access data in the z/OS UNIX file system, use a terminal that is operating in the same code page as the
file system. In other words, if you have a 3270 terminal using a French code page, you cannot access z/OS
UNIX file system data encoded in a German code page when you are using the OMVS-provided character
conversion tables. However, you could provide your own OMVS conversion tables to convert between the
French and German code pages.

Double-byte character set support (DBCS | NODBCS)
By default, the OMVS command supports the use of a double-byte character set (DBCS). If your terminal
does not support DBCS, this default has no effect. To prevent DBCS processing on a DBCS terminal,
specify the NODBCS keyword.

Use the NODBCS option if you have a DBCS terminal but do not want the overhead associated with using
the OMVS command with DBCS support.

Debugging for the OMVS command (DEBUG)
Change this default setting from NO only if IBM asks you to do so. To control the collection and output of
debugging information, change the DEBUG keyword as directed.

Giving an application control of the command line (ECHO | NOECHO)
You can use the ECHO option to allow an application to control the visibility of the input area. When ECHO
is specified, OMVS hides or displays the input area based on the application's setting of the ECHO bit in
the termios structure. If the bit is off, the command line is hidden, except in subcommand mode. If the bit
is on, the command line is visible. The default is NOECHO, which does not allow the application to control
the visibility of the input area.

24 z/OS: UNIX System Services User's Guide

Ending 3270 pass-through mode (ENDPASSTHROUGH)
Applications running from the shell can switch to TSO/3270 pass-through mode, which lets an application
invoke TSO/E functions. For application development purposes, you can specify a key that ends TSO/3270
pass-through mode and forces OMVS to return to the shell session.

Because this key is used only during application development, the default is ENDPASSTHROUGH(NO).

For more information about TSO/3270 pass-through mode, see TSO/3270 passthrough mode in z/OS
UNIX System Services Programming Tools.

The escape character (ESCAPE)
If you do not use a Control function key to escape a character, you can type a two-character escape
sequence instead. (For an explanation of escape characters, see “Typing escape sequences in the shell”
on page 19.)

To change the default escape character, or have more than one escape character, type escape characters
after the ESCAPE keyword. You can type up to eight characters, enclosed in single quotation marks with
no space between them. For example:

OMVS ESCAPE('`¢')

When specifying escape characters:

• Select characters that are not in the POSIX portable character set. See “The POSIX portable character
set” on page 306 to see the contents of the POSIX portable character set.

• Select single-byte characters, even if you are using a double-byte character set.

The escape characters specified with the OMVS command completely override those in the character
conversion table being used. However, if no escape characters are specified with the OMVS command, the
system uses those in the conversion table.

Controlling the size of the output scroll buffer (LINES)
You can override the default size of the output scroll buffer; the default is roughly four screens. With the
LINES keyword, you can specify the size of the buffer; the range is 25 to 3000 lines.

Note: Using a large output scroll buffer increases the amount of storage that the OMVS command requires;
it also causes additional overhead, impacting performance.

Function key settings (PFn)
To customize any of the default function key settings, type your selection in the parentheses after the
function key name. For example:

OMVS PF1(CONTROL)

makes function key 1 the Control key, which you use to type an escape sequence such as <Ctrl-D> (first
you type d on the command line, and then you press the function key).

Displaying the function key settings (PFSHOW | NOPFSHOW)
To turn off the display of function key settings, specify the NOPFSHOW keyword on the OMVS command.

Specifying Language Environment runtime options (RUNOPTS)
To run the TSO/E OMVS command with Language Environment® runtime options, specify the RUNOPTS
keyword.

Example: To run the OMVS command and print out an options report, issue:

OMVS RUNOPTS('RPTOPTS(ON)')

OMVS, a 3270 terminal interface to the z/OS shell 25

See z/OS Language Environment Programming Reference for a list of runtime options.

Note: The use of inappropriate Language Environment runtime options, such as TRAP(OFF) or
POSIX(OFF), may cause the OMVS command to fail.

Any valid runtime options specified by RUNOPTS normally get passed along to the shell.

Multiple sessions (SESSIONS)
If you want more than one session started when you invoke the OMVS command, use the SESSIONS
keyword. The suggested maximum number of sessions is three or four. If you try to start too many
sessions (the limit depends on the size of your TSO/E address space), your TSO/E user ID runs out of
storage and various unpredictable errors might occur. You might have to log off your TSO/E user ID before
you can continue.

The shared TSO/E address space (SHAREAS | NOSHAREAS)
Having the OMVS command and the shell run in the same (shared) TSO/E address space saves one
address space per user and simplifies transaction accounting, as managed by the operating system. The
shell shares the address space (SHAREAS) by default, unless the shell is a SETUID or SETGID program
and the owning UID or GID is not the same as the current owner.

If you specify NOSHAREAS, the shell might keep running even after the QUIT subcommand was entered;
in most cases, it will not.

For more information about shared address space, see Chapter 12, “Performance: Running executable
files,” on page 161.

Controlling data recorded in the debug data set (WRAPDEBUG)
Use the WRAPDEBUG keyword to specify how many lines of debug data that OMVS writes out before
wrapping around to the top of the debug data set.

Performing TSO/E work or ISPF work after invoking the shell
After you invoke the shell, you can:

• Enter a TSO/E command from the command line
• Switch temporarily to TSO/E command mode
• Return to ISPF or the TSO/E READY prompt

Entering a TSO/E command from the z/OS shell
You can enter a TSO/E command from the shell in either of these ways:

• Type the tso shell command before the TSO/E command. For example:

tso "oput source.c(hello) '/u/ehk/source/hello.c'"

The oput command is quoted so that the shell does not process it. If you are copying a file, specify the -t
option to copy a file to your current directory. For more information about the tso command and its
options, see z/OS UNIX System Services Command Reference.

• Type the command on the shell command line and press the TSO function key.

When the TSO/E command completes, typically *** is displayed on the screen. To return to the shell
and resume working at the shell command line, press <Enter> or <Clear>.

Use the man command to view descriptions of TSO/E commands by prefixing the command with tso. For
example, to view a description of the MOUNT command, you would enter:

man tsomount

26 z/OS: UNIX System Services User's Guide

For complete information about the man command, see man - Display sections of the online reference
manual in z/OS UNIX System Services Command Reference.

Command not found? If you type a TSO/E command from the shell and press <Enter> instead of the TSO
function key, you may receive a message that the command is not found. Because you did not press the
TSO function key, the shell attempted to process the command as a shell command. (You can use the
Retrieve function key to redisplay the command.)

Switching to TSO/E command mode
There are two contexts for switching to TSO/E command mode:

• You are in the z/OS shell. You want to run TSO/E commands without shutting down any processes that
might be running and without exiting the shell completely.

• You are in subcommand mode and want to run TSO/E commands.

You can switch to TSO/E command mode to run TSO/E commands (such as OPUT or OGET). When the
command line is empty, press the TSO function key. Any shell scripts or processes that were running
when you pressed the function key continue to run.

Once you are in TSO/E command mode, the screen is in line mode and no function keys are active or
displayed. A special prompt (not the typical TSO/E READY prompt) is issued:

OMVS - Enter a TSO/E command, or press PA1 to return to the shell.

When you complete your work in TSO/E command mode, press <PA1> to return to wherever you were
before you entered TSO/E. You can resume your work in the shell or return to subcommand mode.

ftp or telnet from TSO
There is an ftp command available in the shell, but no telnet command. However, when you use the
OMVS command to login to the shell, you can switch to TSO and issue the telnet command from there,
with the following restriction: When you telnet to a remote MVS host and then access a shell, you can
work in line mode only (for example, you cannot use vi).

See z/OS Communications Server: IP User's Guide and Commands for detailed information about using the
telnet command from TSO.

Exiting the shell
There are four situations when you might want to exit the shell:

• To leave the shell temporarily and switch to TSO/E command mode: Press the TSO function key. You
can do this any time during a session, regardless of whether you are currently running a command or
script. See “Performing TSO/E work or ISPF work after invoking the shell” on page 26 for details.

If you switch to TSO/E command mode, the shell and any shell commands continue running until they
attempt to read from the terminal or until the terminal output buffer is full; if either of these situations
occurs, the commands are suspended until you return to the shell.

• To exit the shell when a foreground process has completed: Type exit or <EscChar-D>. Scroll past
all the output data (or use an autoscroll function key if you have customized a function key to do that),
and exit.

Note: The <EscChar-D> sequence does not work if you have entered set -o ignoreeof in the shell.
See the set command description in z/OS UNIX System Services Command Reference.

If you are using the shell option set +m or its equivalent set +o monitor to have background jobs
run in the same process group as the shell, use the nohup command to run a script or program that will
continue running after you log out.

OMVS, a 3270 terminal interface to the z/OS shell 27

If you were in ISPF when you entered the shell, you are returned to ISPF; if you were in TSO READY
mode, you are returned to TSO/E READY.

• To exit the shell when a background job is running: Press the SubCmd function key and then enter the
QUIT subcommand.

Note: If your OMVS interface is running in SHAREAS mode (shared address space) and you quit all
sessions (QUITALL subcommand or QUIT for the only session), the shell process ends immediately.

If you were in ISPF when you entered the shell, you are returned to ISPF; if you were in TSO/E READY
mode, you are returned to TSO READY.

By default in the shell (the set -m option), a background job runs in a different process group from the
shell, and the job keeps running after you exit the shell. To have background jobs run in the same
process group as the shell, use the set +m command or its equivalent, set +o monitor.

• If your application is in a loop: Try using <EscChar-C> or <EscChar-V> to interrupt it. If this does not
work, press the SubCmd function key to leave the shell. Then type quit and press <Enter>. This causes
the OMVS command to quit abruptly. The workstation returns to TSO/E and the shell stops processing.
For more information on using escape sequences such as <EscChar-C>, see “Typing escape sequences
in the shell” on page 19.

Getting rid of a hung application
If your application hangs, try the following procedure to kill it:

1. On the command line, enter <EscChar-V> (or <EscChar-C>). When this is successful, the shell prompt
is displayed.

2. If step 1 does not work, enter the OPEN or NEXTSESS subcommand to start or switch to a second shell
session. In the second shell session, determine the process identifier (PID) of the hung application by
entering ps -ef.

Then enter kill -s KILL nnnnnn, where nnnnnn is the PID obtained from the ps -ef command.
After the kill command completes, you can return to the first session using the NEXTSESS or
PREVSESS subcommand.

3. If step 2 does not work, enter the QUIT subcommand, or QUITALL if more than one session is active.
This should free your TSO/E terminal, and you can then enter the OMVS command to start another
session. The application may still be hung; if so, you need to use the kill command.

4. If step 3 does not work, ask the operator to cancel your TSO/E user ID, using the CANCEL command.
The operator may also need to use the FORCE command.

5. If step 4 does not work, try a VTAM logoff (using the <SYSREQ> key), and wait long enough for MVS to
end your session before you try to log on again.

Using a double-byte character set (DBCS)
If you want to display or enter double-byte data, you must:

• Work at a terminal that is configured to generate data in code page IBM-939 and follow the procedures
for the terminal emulator being used, if any.

• Specify special LOGMODEs to access TSO/E and VTAM support for DBCS. Typically the systems
programmer sets them up and provides you with instructions.

• Run the TSO/E PROFILE PLANGUAGE(JPN) command, if required, to receive Japanese-language
messages from the OMVS interface to the shell. Do not change your PROFILE PLANGUAGE when
temporarily switched to TSO/E from the shell. After you invoke the shell, OMVS will not change the
language of the messages it issues until you exit the shell and return to TSO/E, change your PROFILE
PLANGUAGE, and reinvoke OMVS.

• Use the null translate table (the default) for character conversion. You do not need to specify the
CONVERT keyword on the OCOPY, OGET, OGETX, OPUT, and OPUTX commands.

28 z/OS: UNIX System Services User's Guide

• Access the shell using the OMVS command with the DBCS keyword, the default setting.
• Define a single-byte escape character for typing an escape sequence, if you do not use the default ¢.

The shell utilities (for example, grep and ed) work with DBCS data in the file system and can be used to
create DBCS data in the file system.

Single-byte restrictions
When working with a double-byte character set, you must use single-byte characters in these situations:

• Single-byte characters for file names. DBCS characters in file names are treated as SBCS characters.
• Single-byte characters for command-line options
• Single-byte characters for command-line arguments
• Single-byte characters for delimiters, such as a slash, braces, parentheses, and so on
• For user-defined environment variables, only SBCS for the names, and SBCS or DBCS for the values
• For the shell environment variables, only IFS, PS1, and PS2 support DBCS values
• For user IDs, passwords, and password phrases
• For device, group, and terminal names.

OMVS, a 3270 terminal interface to the z/OS shell 29

30 z/OS: UNIX System Services User's Guide

Chapter 3. The asynchronous terminal interface to
the shells

For people who work with UNIX systems, the asynchronous terminal interface is familiar. You use the
asynchronous terminal interface if you access the z/OS shells with one of these methods:

• rlogin
• telnet
• rlogin or telnet via the Communications Server
• Communications Server login from a serially attached terminal

ASCII-EBCDIC translation
When you use rlogin, telnet, or Communications Server to access the shell, the data you enter is
translated from ASCII (ISO8859-1) to EBCDIC (IBM-1047) before the shell processes it. To change code
pages for the current session, use the chcp command. To automatically change code pages after you
login, see “Changing the locale in the shell” on page 40 for the z/OS shell, or “Changing the locale in the
shell” on page 54 for the tcsh shell.

For a complete list of the single-byte and double-byte ASCII and EBCDIC code pages that you can specify,
see z/OS XL C/C++ Programming Guide.

Using rlogin to access the shell
When the inetd daemon is set up and active, you can rlogin to a shell from a workstation that has rlogin
client support and is connected via TCP/IP or Communications Server to the MVS system. To login, use the
rlogin command syntax supported at your site.

To improve performance when you rlogin into a shell, you can use shared address space; for more
information, see Chapter 12, “Performance: Running executable files,” on page 161.

Note: If you are writing or porting an rlogin command to rlogin into a shell, the shell interface to rlogin
consists of the FOMTLINP and FOMTLOUT modules, documented in z/OS UNIX System Services Planning.

Using telnet to access the shell
You can telnet to the shell from a workstation that is connected via TCP/IP or Communications Server to
the MVS system. Use the telnet command syntax supported at your site.

Using Communications Server login to access the shell
If you are working at a terminal that is serially attached to the Communications Server, you can login
directly to the shell.

1. Specify the host you want to login to. You receive a message confirming that you are connecting to the
host.

2. At the prompts, enter your user ID and password or password phrase.

© Copyright IBM Corp. 1996, 2018 31

The shell session
Once your login completes, you see your normal shell prompt (for example, $ or >). This is a UNIX
interface, not the 3270-type interface that is displayed by the OMVS command. By default, the terminal
interface is in line mode (also known as canonical mode), which means that each time you type a
command at the prompt, you need to press Enter to process the command. Some utilities switch the
terminal interface to raw mode. When you use a raw mode utility (such as vi or talk), or when command
line editing is enabled in the shell, each keystroke is transmitted; you do not need to press <Enter>.

When you are in a shell session, you can:

• Run all shell commands and utilities.
• Run any application from the z/OS UNIX file system.
• Use the vi editor and other full-screen applications such as talk and more.

In the z/OS UNIX environment, the asynchronous terminal interface session has some differences from an
OMVS session:

1. You cannot switch to TSO/E. However, you can use the tso shell command to run a TSO/E command
from your session.

2. You cannot use the ISPF editor. (This includes the oedit and TSO/E OEDIT commands, which invoke
ISPF File Edit.)

Entering a shell command
You type shell commands and press <Enter> to pass them to the shell.

If you are typing a long command that will not fit on one line, you can use the \ (backslash) continuation
character at the end of the first line. When you then press <Enter>, the line is cleared so that you can
continue typing. The line you typed prior to the backslash is displayed in the output area, and beneath it
the shell prompt changes to > (? in tcsh) to indicate that you are continuing a command.

Interrupting a shell command
If you want to interrupt a command and stop it from completing, type <Ctrl-C>. The command stops
executing and the system displays the shell prompt. You can now enter another command.

Using multiple sessions
With rlogin, telnet, or Communications Server, you can login to a shell more than once, using the
same user ID and password or password phrase. You can also be logged in to a shell using the OMVS
3270 interface and the asynchronous terminal interface at the same time, using the same user ID and
password or password phrase.

Using a double-byte character set (DBCS)
If you want to display or enter double-byte data:

• You must work at a terminal that is configured to generate data in code page IBM-939 and follow the
procedures for the terminal emulator being used, if any.

• Customize your locale and use the chcp command to specify the ASCII and EBCDIC code pages you are
using.

32 z/OS: UNIX System Services User's Guide

– For information on how to customize your locale and configure your setup files, see “Changing the
locale in the shell” on page 40 for the z/OS shell, or “Changing the locale in the shell” on page 54
for the tcsh shell.

When you are working with a double-byte character set, there are some restrictions. See “Single-byte
restrictions” on page 29 for more information.

Standard shell escape characters
The following are some of the standard shell escape characters:

• <Ctrl-C> — Program interruption
• <Ctrl-D> — End of file
• <Ctrl-V> — Quit Program
• <Ctrl-Z> — Suspend Program

The asynchronous terminal interface to the shells 33

34 z/OS: UNIX System Services User's Guide

Chapter 4. Customizing the z/OS shell

If you are interested in working with the z/OS shell, read this information as well as:

• Chapter 6, “Working with z/OS shell commands,” on page 61
• Chapter 8, “Writing z/OS shell scripts,” on page 107

You can personalize your use of the z/OS shell. This topic covers this information:

• Creating or modifying your .profile file.
• Understanding shell variables.
• Customizing your shell environment with the ENV variable.
• Customizing the search path for commands with the PATH variable.
• Improving the performance of shell scripts.
• Changing the locale.
• Customizing the language of messages.
• Setting the time zone.
• Building a STEPLIB environment.
• Setting options for a shell session.

Customizing your .profile
When you start the z/OS shell, it uses information in three files to determine your particular needs or
preferences as a user. The files are accessed in this order:

1. /etc/profile
2. $HOME/.profile
3. The file that the ENV variable specifies.

Settings established in a file accessed earlier can be overwritten by the settings in a file accessed later.

The /etc/profile file provides a default system-wide user environment. The systems programmer can
modify the variables in this file to reflect local needs (for example, the time zone or the language). If you
do not have an individual user profile, the values in the /etc/profile are used during your shell
session.

The $HOME/.profile file (where $HOME is a variable for the home directory for your individual user ID)
is an individual user profile. Any values in the .profile file in your home directory that differ with those
in the /etc/profile file override them during your shell session. z/OS provides a sample individual user
profile. Your administrator may set up such a file for you, or you may create your own.

Typically, your .profile might contain the following lines:

 export ENV=$HOME/.setup #set and export ENV variable
 export PATH=$PATH:$HOME: #set and export PATH variable
 export EDITOR=ed #set and export EDITOR variable
 export PS1='$LOGNAME':'$PWD':' >'

If the value on the right-hand side of the = sign does not contain spaces, tab characters, or other special
characters, you can leave out the single quotation marks.

© Copyright IBM Corp. 1996, 2018 35

Each of the lines begins with an export command. For the z/OS shell, this sets the variable and also
specifies that whenever a subshell is created, these variables should be exported to it. You can also set a
variable on one line and export it on another, as shown here:

ENV=$HOME/.setup
export ENV

If portability to a Bourne shell is a consideration, use the two-line syntax. See “Exporting variables” on
page 110 for more information about exporting variables.
export ENV=$HOME/.setup

Identifies the .setup file in your home directory as your login script (also known as a setup script or
environment file) and specifies that whenever a shell is created, the ENV variable should be exported
to it. See “Customizing your shell environment: The ENV variable” on page 38 for more information
about a login script.

export PATH=$PATH:$HOME:
Identifies the search path to be used when locating a file or directory, and specifies that whenever a
subshell is created, the PATH variable should be exported to it. Here, the system first searches the
path identified in the PATH variable in /etc/profile, the system profile; then the system searches
your home directory; finally, the system searches your current working directory. A leading or trailing
colon, or two colons in a row, represents the current working directory. To avoid confusion, this is
often expressed as:

export PATH=$PATH:$HOME:.

This PATH setting and the one in the example are equivalent. See “Customizing the search path for
commands: The PATH variable” on page 38 for more information.

export PS1='$LOGNAME:$PWD: >'
Identifies the shell prompt that indicates when the shell is ready for input, and specifies that
whenever a subshell is created, the PS1 variable should be exported to it. Here the prompt (default is
$) has been customized to show your login name and working directory. For example, for user ID
TURBO working in the home directory, the prompt would display as:

turbo:/u/turbo: >

When TURBO changes directories, the prompt changes to indicate the working directory.
export EDITOR=ed

Identifies ed as the default editor used by some of the utilities, such as mailx, and specifies that
whenever a subshell is created, the EDITOR variable should be exported to it.

If you create a subshell with the command sh –L, the shell starts and reads and executes your profile
file. Note that the letter L must be in uppercase. The shell looks for .profile in the $HOME directory. If it
is not found, the shell looks in the working directory; therefore, make sure that you are working in the right
directory when you enter this command.

Quoting variable values
When you have blanks in a variable value, you need to enclose it in quotation marks. The quotation marks
tell the shell to treat blanks as literals and not delimiters. Single quotation marks are more serious about
this than are double quotation marks:

• Single quotation marks preserve the meaning of (that is, treat literally) all characters.
• Double quotation marks still allow certain characters ($, ` (back quote), and \ (backslash)) to be

expanded. This is important if you want variable expansion. For example, see how the $ is handled here:

export HOMEMSG="Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:

echo $HOMEMSG

36 z/OS: UNIX System Services User's Guide

would display:

Using /u/user as home directory

If, instead, you enclosed the variable value in single quotation marks, like this:

export HOMEMSG='Using $HOME as home directory'

the following line:

echo $HOMEMSG

would display:

Using $HOME as home directory

As you can see, the $ is not expanded.

Changing variable values dynamically
You can also change any of these values for the duration of your session (or until you change them again).
You enter the name of the environment variable and equate it to a new value.

For example, to change the command prompt string to +>, issue:

PS1='+>'

Understanding shell variables
You can display the shell's variables and their values by entering this command:

set

You may see many variables that you don't recognize. These are built-in, or predefined, variables that are
set up with default values when you start the shell.

You can customize the built-in variables by setting their value in your .profile. Only the variables IFS,
PS1, and PS2 support double-byte characters for the values.

Only the shell variables that are exported are available to shell scripts and commands invoked from the
shell. Environment variables are a subset of shell variables that have been exported.

You can display the environment variables and their values by entering either of these commands:

env
printenv

You can display the value of a single variable with the echo command, the print command, or the
printenv command. For example, any of these commands

echo $HOME

print $HOME

printenv $HOME

displays the current value of the HOME variable.

In general, echo displays the current values of all its arguments, after any shell processing has taken
place. For example, consider:

echo *.doc

Customizing the z/OS shell 37

The shell first expands the wildcard character *. This produces the names of every file in the working
directory that has the suffix .doc. So the output of echo is a list of all such files. And if there are no file
names ending in .doc, the command output is just *.doc.

For more information about shell variables, see the sh command description in z/OS UNIX System Services
Command Reference.

Customizing your shell environment: The ENV variable
So far, we have discussed customization that is set up inside your .profile file. However, the shell reads
your profile file only when you log into the shell or when you enter the sh command –L option.

To always have a customized shell session, you need to have a special shell script that sets up the
environment started each time you start the shell; this is called a login script (also known as an
environment file, or startup script). You specify the name of this script in the ENV variable in
your .profile file.

When you start the shell, the shell looks for an environment variable named ENV. You can use the ENV
variable to point to a login script that sets up things in the same way that the profile file does.

For example, you might put all your alias definitions and other setup instructions into a file called .setup
in your home directory. You want these instructions run when your shell starts after you login and
whenever you explicitly create the shell during a session (for example, as a child shell to run a shell
script). To make sure that ENV is set up when you login or when you execute a shell, specify export ENV
in your .profile file.

export ENV=$HOME/.setup

You might find it useful to put all your aliases in the login script that ENV points to, instead of in
your .profile file. However, you should keep exported variable assignments in your profile, so that they
are run only once.

Customizing the search path for commands: The PATH variable
Command interpreters usually have to search for a file that contains the command you want to run. When
you are using the shell, you tell the shell where to search for a command. Essentially, the shell uses a list
of directories in which commands may be found. This list is specified in your PATH variable in
your .profile file. The list could be called your search path, because it tells the shell where you want to
search.

You can set up a search path with a command of the form:

PATH='dir:dir:...'

For example, you might enter:

PATH='/bin:/usr/bin:/usr/etc:/usr/macneil/bin:/usr/games:/usr'

The shell then searches the directories in the following order, when looking for commands or shell scripts:

1. /bin
2. /usr/bin
3. /usr/etc
4. /usr/macneil/bin
5. /usr/games
6. /usr

As soon as the shell finds a file with an appropriate name, it runs that file.

38 z/OS: UNIX System Services User's Guide

Because the shell runs a command as soon as it finds a file with an appropriate name, pay close attention
to the order in which you list directory names in your search path. For example, the previous search path
specifies the /bin directory (where z/OS shell commands are stored) before the /etc directory.

If you set up your PATH incorrectly, you could get the wrong command. Always search the shell
commands directory first: /bin. Some z/OS shell commands run other shell commands and utilities by
name; they expect to get the z/OS UNIX version of that command and might not work correctly if a
program that has the same name is found first in another directory.

Tip: To ensure that the z/OS shell properly identifies a shell built-in command, specify the shell
commands directory /bin exactly as /bin (not as /bin/ or any other variation) in addition to making the
shell commands directory /bin part of your PATH. Some commands located in /bin are implemented as
shell built-in commands in order to improve performance of shell scripts. The directories specified in
PATH influence how the shell locates commands, including the built-in commands, which also influence
how the shell handles tracked aliases. See “Using alias tracking” on page 67 for more information about
tracked aliases.

Adding your working directory to the search path
You can have the shell search your working directory for commands (in addition to the standard
directories that contain commands). As an example, suppose that you have different directories
containing the source code for different programs. In each directory, you create a shell script named
compile that compiles all the source modules of the program in that directory. To compile a particular
program, enter cd to change to the appropriate directory and then enter:

compile

The shell searches the working directory, finds the compile shell script, and runs it.

You can add your working directory to your search path by one of these methods:

• Putting in an entry without a name.
• Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched after /bin but
before /usr/local:

PATH='/bin::/usr/local' #no name
PATH='/bin:.:/usr/local' #using a period

Both of these say that your working directory should be searched before anything else:

PATH=':/bin:/usr/local' #no name
PATH='.:/bin:/usr/local' #using a period

Both of these say that your working directory should be searched after everything else:

PATH='/bin:/usr/local:' #no name, ends in a colon
PATH='/bin:/usr/local:.' #using a period

The best way to specify search paths is to put them into your .profile file. That way, they are set up
every time you log into the shell.

Checking the search path used for a command
With aliases and search paths, it can be easy to lose track of what is executed when you enter a
command. The type command can tell you which file is executed if you enter a command line that begins
with a specific command. For example:

type date

Customizing the z/OS shell 39

tells you:

date is /bin/date

and the command:

type jobs

tells you:

jobs is a built-in command

You can figure out how the search path works and what effect aliases have.

Customizing the FPATH search path: The FPATH variable
The FPATH variable contains a list of directories that the z/OS shell searches to find executable functions.
Directories in this list are separated by colons. sh searches each directory in the order specified in the list
until it finds a matching function. FPATH should specify only directories where the only executable files
are function definitions.

Customizing the DLL search path: The LIBPATH variable
If you use a utility that uses a dynamic link library (DLL) —for example, dbx— you can set up the search
path for the DLL with the LIBPATH variable. If this variable is not set, your working directory is searched
for the DLL. The default setting shipped in /samples/profile is:

LIBPATH=/lib:/usr/lib:.

Improving the performance of shell scripts
To improve the performance of shell scripts, set the _BPX_SPAWN_SCRIPT environment variable to a
value of YES.

If _BPX_SPAWN_SCRIPT=YES is not already placed in /etc/profile, you can put it in your
$HOME/.profile.

Here is what the variable does: if the spawn callable service determines that a file is not a z/OS UNIX
executable or a REXX exec, this setting causes spawn to run the file as a shell script directly. In the default
processing, however, if the spawn callable service determines that a file is not a z/OS UNIX executable or
a REXX exec, the spawn fails with ENOEXEC, and the shell then forks another process to run the input
shell script. Setting this variable to YES eliminates the additional overhead of the fork.

You may want to set the variable to NO when you are running a non-shell application. For example, if an
application does not support shell script invocations, set the variable to NO. Likewise, if an application is
in test mode and the returning of ENOEXEC would be a useful indication of an error in the format of the
target executable file, set the variable to NO.

Changing the locale in the shell
The default locale for the shell and utilities is C. If you want to change the locale, read these topics:

• “Advantages of a locale compatible with the MVS code page” on page 41
• “Advantages of a locale generated with code page IBM-1047” on page 41
• “Changing the locale setting in your profile” on page 41
• “The LC_SYNTAX environment variable” on page 43
• “The LOCPATH environment variable” on page 44

40 z/OS: UNIX System Services User's Guide

For additional information about locale and LC_SYNTAX, see z/OS Language Environment Programming
Guide.

Advantages of a locale compatible with the MVS code page
Running the shell and utilities in a locale whose code page matches the code page you are using in MVS
(which may not be compatible with code page IBM-1047 with respect to the EBCDIC variant characters)
has several advantages.

• Converting data from a country or region's native code page to IBM-1047 is no longer required. This
may enhance interoperability with other non-z/OS UNIX components of MVS.

• Remapping your keyboard is unnecessary.

Customizing for a locale not based on code page IBM-1047

If you select a locale that is not based on code page IBM-1047 and you use the utilities lex, mailx,
make, and yacc, there is a further customizing step. These utilities expect all their input files, both system
files and user-created files, to be in the same code page. So, for example, if you select the German locale
De_DE.IBM-273, these utilities expect the files they process to be in code page IBM-273. Because
system files are in code page IBM-1047, you need to use iconv to convert the following system files to
the code page used by your selected locale:

Utility File

lex /etc/yylex.c

mailx /etc/mailx.rc

make /etc/startup.mk

yacc /etc/yyparse.c

Advantages of a locale generated with code page IBM-1047
You might prefer using one of the locales that is compatible with IBM-1047, but not compatible with the
MVS code page if:

• You already use one of the IBM-1047 locales and have made an investment in data conversion and
keyboard remapping.

• You have a requirement to run, in your shell environment, strictly standards-compliant applications or
other applications that do not use LC_SYNTAX. If you want to use a single compiled and link-edited
instance of a program in multiple locales, such a program is guaranteed to work in multiple locales only
if IBM-1047 locales are used.

• You have shell scripts that are used in multiple locales. Having different users operating in various
locales that are not generated from code page IBM-1047 requires multiple copies of a shell script, one
for each different locale's code page.

There are other important code page conversion considerations when the shell uses code page IBM-1047
and MVS does not; see Appendix C, “Code page conversion when the shell and MVS have different
locales,” on page 305 for that information.

Changing the locale setting in your profile
To change the locale, you set the value for the LC_ALL variable and export it. This variable overrides any
values for locale specified for the LC_ variables such as LC_COLLATE, LC_MESSAGES, and LC_SYNTAX, but
it does not override LC_CTYPE.

If you change LC_ALL to a new locale, and z/OS UNIX messages are provided in that language, change the
LANG variable setting to match the LC_ALL setting. Currently, z/OS UNIX messages are shipped in English,
Kanji, and Simplified Chinese. If you do not change LANG, the messages will be in English.

Customizing the z/OS shell 41

If z/OS UNIX messages are not provided in your language, changing LANG by itself will have no effect.
However, although messages are not supplied in your language, the z/OS UNIX messages that are
displayed in English will use your national language characters and should display correctly on your
terminals.

When you change the locale, the shell and utilities run in the new locale, but the shell locale category
LC_CTYPE stays in the POSIX locale. This can affect parsing and shell expansion, and cause unpredictable
behavior. In order to avoid this problem, after you change locale you must overwrite the current shell by
issuing the exec sh -L command. The new shell will correctly interpret the proper character set for the
new locale.

If you place an export LC_ALL=localename statement in your login profile, or if one has been placed
in /etc/profile, make sure it is followed with exec sh -L and protect that with tty -s, as shown in
“Examples: Changing locale” on page 42. If you don't protect it with the tty -s test, BPXBATCH SH
command will not run the command.

If you use exec sh -L, there are two situations that you must take into account:

1. Loop control; you only want the exec sh -L to be executed the first time.
2. If you plan to use BPXBATCH or OSHELL (which calls BPXBATCH) with national language support, you

need to define the LANG and LC_ALL variables in a file for BPXBATCH to use. See “Passing
environment variables to BPXBATCH” on page 147 for more information.

If your /etc/profile has been set up for the proper locale, you only need to change your .profile if
you want a different locale than already set up as the default. For more information on setting up locale
and messages, see the section on customizing for your national code page in the shell in z/OS UNIX
System Services Planning.

Examples: Changing locale

If you are using OMVS, the 3270 terminal interface. If your /etc/profile is not set up for your locale
and LANG, then in order to work in a locale such as Danish, then add this code to the .profile file:

if test -z "$LOCALE_SWITCH" && tty -s
then
 echo " - "
 echo " - Logon shell will now be invoked to reflect - "
 echo " - code page IBM-277 - "
 echo " - "
 LOCALE_SWITCH=EXECUTED
 LANG=C
 LC_ALL=Da_DK.IBM-277
 export LANG LC_ALL LOCALE_SWITCH
 #Issue chcp if not using OMVS command
 if test "$_BPX_TERMPATH" ! "OMVS"
 then
 chcp -a ISO8859-1 -e IBM-277
 fi
exec sh -L
else
 echo " - "
 echo " - Welcome to OS/390 UNIX System Services - "
 echo " - "
fi

If you want your messages displayed in a different language than that specified in the system-wide /etc/
profile, you must modify your .profile accordingly. For more information, see “Customizing the
language of your messages” on page 44.

For a list of the z/OS UNIX locales (and their locale object names) and locale source files, see Appendix E,
“Locale objects, source files, and charmaps,” on page 315.

42 z/OS: UNIX System Services User's Guide

The LC_SYNTAX environment variable
There are 13 variant characters in the POSIX portable character set whose encoding might vary on
different EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

Before MVS SP Release 5.2.2, the z/OS shell and utilities required that all data in the z/OS UNIX file
system be encoded in one of three code pages: IBM-1047, IBM-1027, or IBM-939. Any data moved into
the z/OS UNIX file system from a workstation or from an MVS data set often had to be converted to one of
code pages IBM-1047, IBM-1027, or IBM-939 before it could be processed by the shell. Similarly, to
ensure that any variant characters keyed in at the terminal had the correct encoding, you had to either use
the conversion option of the OMVS command or customize your keyboard.

Now, however, the shell can process data in additional EBCDIC code pages, not just the three code pages
previously supported. When you specify a locale with the LC_ALL variable, the LC_SYNTAX environment
variable is set. The shell uses the LC_SYNTAX environment variable to determine the code points to use
for the 13 variant characters. This means that the shell can adapt dynamically to the code page of the
current locale.

Applications that use LC_SYNTAX will work in multiple locales using multiple code pages. To be sensitive
to the 13 variant characters, an application must be enabled to use LC_SYNTAX. For information about
how to do this, see z/OS XL C/C++ Programming Guide.

LC_SYNTAX—an example

For example, consider the echo command and its use of the backslash (\) character. The backslash is one
of the 13 variant characters. The following command:

echo 'this is\nreal handy'

produces the following output at the terminal:

this is
real handy

echo finds and converts the \n in the input to a <newline> character in the output. To do this, echo must
know the encoding for the backslash character in the current user's environment—in this case, the
character generated by the user's terminal when the backslash key is pressed.

A 3270 terminal operating in the USA locale En_US.IBM-037 (code page IBM-037) generates X'E0' for the
backslash, while a 3270 terminal operating in the German locale De_DE.IBM-273 (code page IBM-273)
generates X'EC'. The LC_SYNTAX locale category provides this locale-specific hexadecimal encoding
information to echo and the other utilities.

When the USA user runs in locale En_US.IBM-037, echo determines from the LC_SYNTAX information in
this locale that the expected encoding for backslash is X'E0'. Likewise, when the German user runs in
locale De_DE.IBM-273, echo determines from the LC_SYNTAX information in this locale that the
expected encoding for backslash is X'EC'.

Customizing the z/OS shell 43

Limitations

The LC_SYNTAX setting does not affect:

• REXX execs.
• The ISPF shell (ISHELL). ISHELL runs in the locale that MVS is using, and therefore this could be

different from the shell locale.
• Shell scripts. The code page in which a shell script is encoded must match the code page of the locale in

which it is run. For a shell script to be shared by multiple users, they must all be in a locale that uses the
same code page as the code page in which the shell script is encoded.

If you have different users operating in various locales, you need multiple copies of a shell script, one
for each different locale code page. You can use the iconv command to convert a shell script from one
code page to another.

If shell scripts are tagged and automatic conversion is not enabled, then the code page in which a shell
script is encoded must match the code page of the locale in which it is run.

If shell scripts are tagged and automatic conversion is enabled, then the locale must indicate a SBCS
code page and the scripts must be SBCS.

The LOCPATH environment variable
LOCPATH is an environment variable that tells the setlocale() function the name of the directory from
which to load locale object files. If LOCPATH is not defined, the default directory /usr/lib/nls/locale is
searched. LOCPATH is similar to the PATH environment variable; it contains a list of z/OS UNIX directories
separated by colons. For detailed information on how setlocale() searches for locale object files, see
the description of setlocale() in z/OS XL C/C++ Runtime Library Reference.

Customizing the language of your messages
If you want your messages displayed in a different language than that specified in the system-wide /etc/
profile, add this line to your .profile:

export LANG=your_language

your_language is the first part of the locale name listed in Appendix E, “Locale objects, source files, and
charmaps,” on page 315. For example, Ja_JP in the locale name JA_JP.IBM-939. Currently, z/OS UNIX
ships messages in English, Kanji, and Simplified Chinese.

Setting your local time zone
The shell and utilities assume that the times stored in the file system and returned by the operating
system are stored using the Greenwich mean time (GMT) or Universal Time Coordinated (UTC) as a
universal reference. In the system-wide /etc/profile, the TZ environment variable maps that reference
time to the local time specified with the variable. You can use a different time zone by setting the TZ
variable in your .profile.

The three primary fields in the time zone specification are:

1. The local standard time, abbreviated—for example, EST or MSEZ.
2. The time offset west from the universal reference time, typically specified in hours (minutes and

seconds are optional). A minus sign (-) indicates an offset east of the universal reference time.
3. The daylight saving time zone, abbreviated—for example, EDT. If this and the first field are identical or

this value is missing, daylight saving time conversion is disabled. Optionally, you can specify an
additional rule that indicates when daylight saving time starts and ends.

44 z/OS: UNIX System Services User's Guide

Example: If you want to set your time zone to Eastern Standard Time (EST) and export it, specify:

export TZ="EST5EDT"

• EST is Eastern Standard Time, the local time zone.
• The standard time zone is 5 hours west of the universal reference time.
• EDT is Eastern Daylight Saving time zone.

For complete information about how to specify the local time zone, see Format of the TZ environment
variable in z/OS UNIX System Services Command Reference.

Building a STEPLIB environment: The STEPLIB environment variable
Traditionally, some MVS users have preferred to alter the search order for MVS executable files when they
are running a new or test version of an application program, such as a runtime library. To do this, they
code a STEPLIB DD statement on the JCL used to run the application. Accessed ahead of LINKLIB or
LPALIB, a STEPLIB is a set of private libraries where the new or test version of the application is stored.

The STEPLIB environment variable provides the ability to use a STEPLIB when running a z/OS UNIX
executable file. This variable is used to determine how to set up the STEPLIB environment for an
executable file. The STEPLIB environment variable should always be exported.

You can set the variable in one of three ways:

Table 2: Three ways to set the STEPLIB environment variable (z/OS shell)

Statement Action

STEPLIB=CURRENT Passes on any currently active TASKLIB, STEPLIB, or JOBLIB
allocations from the invoker's MVS program search order
environment to the environment created for the executable
file to run in. Any STEPLIB environment in the invoker's
process image is recreated in the new process image for the
executable file when the file is invoked. This is the default
value that is set if no STEPLIB variable is specified.

If an application uses fork(), spawn(), or exec(), the
STEPLIB data sets must be cataloged.

STEPLIB=NONE Specifies that no STEPLIB environment should be set up for
executable files.

STEPLIB=DSN1:DSN2:DSN3 Sets up a library search order for the STEPLIB, in the order
that the data sets are specified. You can specify up to 255
fully qualified data set names, separated by colons. For
example:

export STEPLIB=SMITH.C.LOADLIB:SMITH.PL1.LOADLIB

The specified data sets must be cataloged MVS load libraries
that you have security access to. The data sets specified here
are built into a STEPLIB environment for the executable file.

Restrictions on STEPLIB data sets
For executable files that have the set-user-ID or set-group-ID bit set, there are restrictions on the data
sets that can be built into the STEPLIB environment for the file to run in. The systems programmer
maintains a STEPLIB sanction list of data sets that can be included in the STEPLIB environment for such
executable files. Only data sets on that list are built into the STEPLIB environment for such files. If you
need a data set added to the list, contact your systems programmer.

Customizing the z/OS shell 45

Setting options for a shell session
The set command lets you set options, or flags, for your shell session. These flags control the way that
the shell handles certain situations.

1. To display the shell flags that are currently set, enter:

set –o

2. To turn on an option, enter:

set –o name

where name is the name of the option you want to turn on. If you want an option turned on for every
shell session, put the set command in your login script (the script that is specified on the ENV
variable).

3. To turn off an option, enter:

set +o name

Contrary to what you might expect, - means on, and + means off.

The following discussion highlights some of the options you may find useful. For all the options, see the
set command description in z/OS UNIX System Services Command Reference.

Exporting variables
The command:

set -o allexport

indicates that you want to export—that is, pass to a child process or subsequent command—every variable
that is assigned a value. This command exports all variables that currently have values, plus all variables
assigned a value in the future.

Controlling redirection
The command:

set -o noclobber

indicates that you do not want the > redirection operator to overwrite existing files. When this option is on
and you specify the construct >file, the redirection works only if file does not exist. If you have this option
on and you really do want to redirect output into an existing file, you must use >|file (with an "or" bar after
the >) to indicate output redirection. See "“Using a wildcard character to specify file names” on page 74"
for more information.

Preventing wildcard character expansion
The command:

set -o noglob

tells the shell not to expand wildcard characters in file names. This command is occasionally useful if you
are entering command lines that contain a number of characters that would normally be expanded. See
“Using a wildcard character to specify file names” on page 74 for a discussion of wildcard characters.

46 z/OS: UNIX System Services User's Guide

Displaying input from a file
The command:

set -o verbose

tells the shell to display its input on the screen as the input is read. This command lets you keep track of
material that comes from a file.

Running a command in the current environment
The command:

set -o pipecurrent

causes the shell to run the last command of a pipeline in the current environment.

Displaying current option settings
The command:

set -o

displays all current option settings. The display of each option is preceded by one of these:

-o to indicate that the option is enabled
+o to indicate that the option is disabled

Customizing the z/OS shell 47

48 z/OS: UNIX System Services User's Guide

Chapter 5. Customizing the tcsh shell

If you are interested in using the tcsh shell, read this information as well as:

• Chapter 7, “Working with tcsh shell commands,” on page 85
• Chapter 9, “Writing tcsh shell scripts,” on page 125

You can personalize your use of the tcsh shell. This topic covers these tasks:

• Understanding and modifying your startup files
• Understanding shell variables
• Customizing the search path for commands with the PATH variable
• Improving the performance of shell scripts
• Changing the locale
• Customizing the language of messages
• Setting the time zone
• Building a STEPLIB environment
• Setting options for a shell session

Understanding the startup files
When you start the tcsh shell, it uses information in several files to determine your particular needs or
preferences as a user. The files are accessed in the following order:

1. /etc/csh.cshrc
2. /etc/cs.login
3. $HOME/.tcshrc
4. $HOME/.cshrc
5. $HOME/.history
6. $HOME/.login
7. $HOME/.cshdirs

Settings established in a file accessed earlier can be overwritten by the settings in a file accessed later.

The /etc/csh.cshrc file contains system-wide settings that are common to all shell users. It is used for
setting shell variables and defining command aliases. Usually, it will set environment variables such as
PATH.

The /etc/csh.login file is a system-wide file that is only executed by tcsh login shells, and is used for
setting environment variables such as TERM. Opening messages are typically placed here.

The /$HOME/.tcshrc file contains settings that may be customized for an individual shell user. It is used
for setting shell variables and defining command aliases. Here, users can set variables that are different
from the system defaults set in the system-wide profiles.

The /$HOME/.cshrc file is included for compatibility with C-Shell users, and is read only if /
$HOME/.tcshrc does not exist. It contains the same types of settings as /$HOME/.tcshrc.

The /$HOME/.history file is read by login shells to initialize the history list. It is created by the shell,
based on the setting of certain shell variables.

The /$HOME/.login file is only executed by tcsh login shells, and is used for setting environment
variables that have been customized for an individual user. It usually contains commands that affect a
user's terminal settings.

© Copyright IBM Corp. 1996, 2018 49

Typically, your .login file might contain the following lines:

set TERM environment variable
setenv TERM vt220

set DISPLAY environment variable
setenv DISPLAY mymachine.mydomain.com:0

The $HOME/.cshdirs file is read by login shells to initialize the directory stack. It is created by the shell,
based on the setting of certain shell variables.

The system-wide startup files (located in /etc) are modified by system administrators to contain settings
that should pertain to all users. The startup files in a user's home directory ($HOME/. . .) can be
altered to suit specific user preferences, with the exception of $HOME/.history and $HOME/.cshdirs,
which are created by the shell. A user can unset or unalias anything that was defined in a system-wide
startup file.

Quoting variable values
When you have blanks in a variable value, you need to enclose it in quotation marks. The quotation marks
tell the shell to treat blanks as literals and not delimiters. Single quotation marks are more serious about
this than are double quotation marks:

• Single quotation marks preserve the meaning of (that is, treat literally) all characters.
• Double quotation marks still allow certain characters ($, ` (backquote), and \ (backslash)) to be

expanded. This is important if you want variable expansion. For example, see how the $ is handled here:

setenv HOMEMSG "Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:

echo $HOMEMSG

would display:

Using /u/user as home directory

If, instead, you enclosed the variable value in single quotation marks, like this:

setenv HOMEMSG 'Using $HOME as home directory'

the following:

echo $HOMEMSG

would display:

Using $HOME as home directory

As you can see, the $ is not expanded.

Changing variable values dynamically
You can also change any of these values for the duration of your session (or until you change them again).
Enter the name of the environment or shell variable and equate it to a new value.

To change the command prompt string to +>, issue:

set prompt='+>'

50 z/OS: UNIX System Services User's Guide

Understanding shell variables
You can display the shell's variables and their values by entering this command:

set

or

set -r

set -r displays readonly shell variables.

You may see many variables that you don't recognize. These are built-in, or predefined, variables that are
set up with default values when you start the shell.

You can customize the built-in variables by setting their value in your .tcshrc file.

Only the shell variables that are defined in the .tcshrc file are available to shell scripts and commands
invoked from the shell. Environment variables are inherited by subshells, and can be displayed by
entering either of these commands:

setenv
printenv

You can display the value of a single variable with the echo command or the printenv command. For
example, either of these commands

echo $HOME

printenv $HOME

displays the current value of the HOME variable.

In general, echo displays the current values of all its arguments, after any shell processing has taken
place. The shell first expands the wildcard character *.

Example: Consider:

echo *.doc

Result: This produces the names of every file in the working directory that has the suffix .doc. So the
output of echo is a list of all such files. And if there are no file names ending in .doc, the command output
is just *.doc.

For more information about shell variables, see the tcsh command description in z/OS UNIX System
Services Command Reference.

Customizing your shell environment: The .tcshrc file
So far, we have discussed customization that is set up inside your .login file. However, the shell reads
this file only when you log into the shell or when you enter the tcsh command with the –l option. Note
that the option is a lowercase "L".

To always have a customized shell session, you need to have a special shell script that customizes your
shell variables each time you start the shell; this is the purpose of the .tcshrc file (also known as a
startup script).

For example, you might put all your alias definitions and other setup instructions into this file. You want
these instructions run when your shell starts after you login and whenever you explicitly create the shell
during a session (for example, as a child shell to run a shell script).

Following is a sample .tcshrc file:

Customizing the tcsh shell 51

==
path shell variable

Lists directories in which to look for executable commands.
==
#set path = (/bin /usr/local/bin /usr/bin)

test if we are an interactive shell
if ($?prompt) then
==
prompt shell variable

The string which is printed before reading each command from the
terminal. Currently set to display hostname, and current working
directory.
==
set prompt = "%m:%~> "

==
rmstar shell variable

If set, the user is prompted before 'rm *' is executed.
==
set rmstar

==
noclobber shell variable

If set, output redirection will not overwrite existing files.
==
#set noclobber

==
source complete.tcsh
==
if (`filetest -e /etc/complete.tcsh`) then
 source /etc/complete.tcsh
endif
endif # interactive shell

==
set up useful aliases
==
alias m more

Figure 9: A sample .tcsh file

Customizing the search path for commands: The PATH variable
Command interpreters usually have to search for a file that contains the command you want to run. When
you are using the shell, you tell the shell where to search for a command. Essentially, the shell uses a list
of directories in which commands may be found. This list is specified in your PATH variable in your etc/
csh.cshrc file. The list could be called your search path, because it tells the shell where you want to
search.

You can set up a search path with a command of the form:

setenv path 'dir:dir:...'

or,

set path=(dir1 dir2)

For example, you might enter:

setenv path '/bin:/usr/bin:/usr/macneil/bin:/usr/games:/usr'

The shell then searches the directories in the following order, when looking for commands or shell scripts:

1. /bin

52 z/OS: UNIX System Services User's Guide

2. /usr/bin
3. /usr/macneil/bin
4. /usr/games
5. /usr

As soon as the shell finds a file with an appropriate name, it runs that file.

Because the shell runs a command as soon as it finds a file with an appropriate name, pay close attention
to the order in which you list directory names in your search path. For example, the previous search path
specifies the /bin directory (where shell commands are stored) before the /usr/bin directory.

If you set up your PATH incorrectly, you could get the wrong command. You should generally search the
shell commands directory first: /bin.

Adding your working directory to the search path
You can have the shell search your working directory for commands (in addition to the standard
directories that contain commands). As an example, suppose you have different directories containing the
source code for different programs. In each directory, you create a shell script named compile that
compiles all the source modules of the program in that directory. To compile a particular program, enter
cd to change to the appropriate directory and then enter:

compile

The shell searches the working directory, finds the compile shell script, and runs it.

You can add your working directory to your search path by one of these methods:

• Putting in an entry without a name
• Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched after /bin but
before /usr/local:

setenv path '/bin::/usr/local' #no name
setenv path '/bin:.:/usr/local' #using a period

Both of these say that your working directory should be searched before anything else:

setenv path ':/bin:/usr/local' #no name
setenv path '.:/bin:/usr/local' #using a period

Both of these say that your working directory should be searched after everything else:

setenv path '/bin:/usr/local:' #no name, ends in a colon
setenv path '/bin:/usr/local:.' #using a period

The best way to specify search paths is to put them into your .tcshrc file. That way, they are set up every
time you log into the shell.

Checking the search path used for a command
With aliases and search paths, it can be easy to lose track of what is executed when you enter a
command. The which command can tell you which file is executed if you enter a command line that
begins with a specific command. The where command can tell you where versions of the command are
located. For example:

which kill

tells you:

kill: shell built-in command.

Customizing the tcsh shell 53

and the command:

where kill

tells you:

kill is a shell built-in
/bin/kill

Customizing the DLL search path: The LIBPATH variable
If you use a utility that uses a dynamic link library (DLL) —for example, dbx— you can set up the search
path for the DLL with the LIBPATH variable. If this variable is not set, your working directory is searched
for the DLL. The default setting shipped in /samples/login is:

setenv LIBPATH "/lib:/usr/lib:."

Changing the locale in the shell
The default locale for the shell and utilities is C.

For additional information about locale and LC_SYNTAX, see z/OS Language Environment Programming
Guide.

Advantages of a locale compatible with the MVS code page
Running the shell and utilities in a locale whose code page matches the code page you are using in MVS
(which might not be compatible with code page IBM-1047 with respect to the EBCDIC variant characters)
has several advantages:

• Converting data from a given country or region's native code page to IBM-1047 is no longer required.
This may enhance interoperability with other non-z/OS UNIX components of MVS.

• Remapping your keyboard is unnecessary.

Customizing for a locale not based on code page IBM-1047

If you select a locale that is not based on code page IBM-1047 and you use the utilities lex, mailx,
make, and yacc, there is a further customizing step. These utilities expect all their input files, both system
files and user-created files, to be in the same code page. So, for example, if you select the German locale
De_DE.IBM-273, these utilities expect the files they process to be in code page IBM-273. Because
system files are in code page IBM-1047, you need to use iconv to convert the following system files to
the code page used by your selected locale:

Utility File

lex /etc/yylex.c

mailx /etc/mailx.rc

make /etc/startup.mk

yacc /etc/yyparse.c

Advantages of a locale generated with code page IBM-1047
On the other hand, you may prefer using one of the locales that is compatible with IBM-1047, but not
compatible with the MVS code page if:

• You already use one of the IBM-1047 locales and have made an investment in data conversion and
keyboard remapping.

54 z/OS: UNIX System Services User's Guide

• You have a requirement to run, in your shell environment, strictly standards-compliant applications or
other applications that do not use LC_SYNTAX. If you want to use a single compiled and link-edited
instance of a program in multiple locales, such a program is guaranteed to work in multiple locales only
if IBM-1047 locales are used.

• You have shell scripts that are used in multiple locales. Having different users operating in various
locales that are not generated from code page IBM-1047 requires multiple copies of a shell script, one
for each different locale's code page.

There are other important code page conversion considerations when the shell uses code page IBM-1047
and MVS does not; see Appendix C, “Code page conversion when the shell and MVS have different
locales,” on page 305 for that information.

Changing the locale setting in your profile
To change the locale, you set the value for the LC_ALL variable. This variable overrides any values for
locale specified for the LC_ variables such as LC_COLLATE, LC_MESSAGES, and LC_SYNTAX, but it does
not override LC_CTYPE.

If you change LC_ALL to a new locale, and z/OS UNIX messages are provided in that language, change the
LANG variable setting to match the LC_ALL setting. Currently, z/OS UNIX messages are shipped in English,
Kanji, and Simplified Chinese. If you do not change LANG, the messages will be in English.

If z/OS UNIX messages are not provided in your language, changing LANG by itself has no effect. However,
although messages are not supplied in your language, the z/OS UNIX messages that are displayed in
English will use your national language characters and should display correctly on your terminals.

When you change the locale, the shell and utilities run in the new locale, but the shell locale category
LC_CTYPE stays in the POSIX locale. This can affect parsing and shell expansion, and cause unpredictable
behavior. In order to avoid this problem, after you change locale you must overwrite the current shell by
issuing the exec tcsh -l command. The new shell will correctly interpret the proper character set for
the new locale.

If you place a setenv LC_ALL localename statement in your login profile, or if one has been placed
in /etc/csh.login, make sure it is followed with exec tcsh -l and protect that with tty -s, as
shown in “Examples: Changing locale” on page 55. If you don't protect it with the tty -s test,
BPXBATCH SH command will not run the command.

If you use exec tcsh -l, there are two situations that you must take into account:

1. Loop control; you only want the exec tcsh -l to be executed the first time.
2. If you plan to use BPXBATCH or OSHELL (which calls BPXBATCH) with national language support, you

need to define the LANG and LC_ALL variables in a file for BPXBATCH to use. See “Passing
environment variables to BPXBATCH” on page 147 for more information.

If your /etc/csh.login was set up for the proper locale, you only need to change your .login if you
want a different locale than already set up as the default. For more information on setting up locale and
messages, see the section on customizing for your national code page in the shell in z/OS UNIX System
Services Planning.

Examples: Changing locale

For example, say that you are using OMVS, the 3270 terminal interface. If your /etc/csh.login is not
set up for your locale and LANG, then in order to work in a locale such as Danish, you should add this to
your .login file:

tty -s
set tty_rc=$status
if (($?LOCALE_SWITCH == 0) && ($tty_rc == 0)) then
 echo "--"
 echo "- Logon shell will now be invoked to reflect -"
 echo "- code page IBM-277 -"
 echo "--"
 setenv LOCALE_SWITCH EXECUTED

Customizing the tcsh shell 55

 setenv LANG C
 setenv LC_ALL Da_DK.IBM-277
 # Issue chcp if not using OMVS command
 if ($?_BPX_TERMPATH != "OMVS") then
 chcp -a ISO8859-1 -e IBM-277
 endif
 exec tcsh -l
endif
unset tty_rc

If you want your messages displayed in a different language than that specified in the system-wide /etc/
csh.login, you have to modify your .login accordingly.

For a list of the z/OS UNIX locales (and their locale object names) and locale source files, see Appendix E,
“Locale objects, source files, and charmaps,” on page 315.

The LC_SYNTAX environment variable
There are 13 variant characters in the POSIX portable character set whose encoding might vary on
different EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

When you specify a locale with the LC_ALL variable, the LC_SYNTAX environment variable is set. The shell
uses the LC_SYNTAX environment variable to determine the code points to use for the 13 variant
characters. This means that the shell can dynamically adapt to the code page of the current locale.

Applications that use LC_SYNTAX will work in multiple locales using multiple code pages. To be sensitive
to the 13 variant characters, an application must be enabled to use LC_SYNTAX. For information on how
to do this, see z/OS XL C/C++ Programming Guide.

LC_SYNTAX—an example

For example, consider the echo command and its use of the backslash (\) character. The backslash is one
of the 13 variant characters. When the echo style is all or sysv, the following command:

echo 'this is\nreal handy'

produces the following output at the terminal:

this is
real handy

echo finds and converts the \n in the input to a <newline> character in the output. To do this, echo must
know the encoding for the backslash character in the current user's environment—in this case, the
character generated by the user's terminal when the backslash key is pressed.

A 3270 terminal operating in the USA locale En_US.IBM-037 (code page IBM-037) generates X'E0' for the
backslash, while a 3270 terminal operating in the German locale De_DE.IBM-273 (code page IBM-273)
generates X'EC'. The LC_SYNTAX locale category provides this locale-specific hexadecimal encoding
information to echo and the other utilities.

56 z/OS: UNIX System Services User's Guide

When the USA user runs in locale En_US.IBM-037, echo determines from the LC_SYNTAX information in
this locale that the expected encoding for backslash is X'E0'. Likewise, when the German user runs in
locale De_DE.IBM-273, echo determines from the LC_SYNTAX information in this locale that the
expected encoding for backslash is X'EC'.

Limitations

The LC_SYNTAX setting does not affect:

• REXX execs.
• The ISPF shell (ISHELL). ISHELL runs in the locale that MVS is using, and therefore this could be

different from the shell locale.
• Shell scripts. The code page in which a shell script is encoded must match the code page of the locale in

which it is run. For a shell script to be shared by multiple users, they must all be in a locale that uses the
same code page as the code page in which the shell script is encoded.

If you have different users operating in various locales, you need multiple copies of a shell script, one
for each different locale code page. You can use the iconv command to convert a shell script from one
code page to another.

If shell scripts are tagged and automatic conversion is not enabled, then the code page in which a shell
script is encoded must match the code page of the locale in which it is run.

If shell scripts are tagged and automatic conversion is enabled, then the locale must indicate a SBCS
code page.

The LOCPATH environment variable
LOCPATH is an environment variable that tells the setlocale() function the name of the directory from
which to load locale object files. If LOCPATH is not defined, the default directory /usr/lib/nls/locale is
searched. LOCPATH is similar to the PATH environment variable; it contains a list of z/OS UNIX directories
separated by colons. For detailed information on how setlocale() searches for locale object files, see
the description of setlocale() in z/OS XL C/C++ Runtime Library Reference.

Customizing the language of your messages
If you want your messages displayed in a different language than that specified in the system-wide /
etc/.login, add this line to your .login:

setenv LANG your_language

your_language is the first part of the locale name listed in Appendix E, “Locale objects, source files, and
charmaps,” on page 315. For example, Ja_JP in the locale name JA_JP.IBM-939. Currently, z/OS UNIX
ships messages in English, Kanji and Simplified Chinese.

Setting your local time zone
The shell and utilities assume that the times stored in the file system and returned by the operating
system are stored using the Greenwich Mean Time (GMT) or Universal Time Coordinated (UTC) as a
universal reference. In the system-wide /etc/csh.login, the TZ environment variable maps that
reference time to the local time specified with the variable. You can use a different time zone by setting
the TZ variable in your .login.

The three primary fields in the time zone specification are:

1. The local standard time, abbreviated—for example, EST or MSEZ.
2. The time offset west from the universal reference time, typically specified in hours (minutes and

seconds are optional). A minus sign (-) indicates an offset east of the universal reference time.

Customizing the tcsh shell 57

3. The daylight saving time zone, abbreviated—for example, EDT. If this and the first field are identical or
this value is missing, daylight saving time conversion is disabled. Optionally, you can specify an
additional rule that indicates when daylight saving time starts and ends.

For example, if you want to set your time zone to Eastern Standard Time (EST) and export it, specify:

setenv TZ "EST5EDT"

• EST is Eastern Standard Time, the local time zone.
• The standard time zone is 5 hours west of the universal reference time.
• EDT is Eastern Daylight Saving time zone.

For complete information about how to specify the local time zone, see Format of the TZ environment
variable in z/OS UNIX System Services Command Reference.

Building a STEPLIB environment: The STEPLIB environment variable
Traditionally, some MVS users have preferred to alter the search order for MVS executable files when they
are running a new or test version of an application program, such as a runtime library. To do this, they
code a STEPLIB DD statement on the JCL used to run the application. Accessed ahead of LINKLIB or
LPALIB, a STEPLIB is a set of private libraries where the new or test version of the application is stored.

The STEPLIB environment variable provides the ability to use a STEPLIB when running a z/OS UNIX
executable file. This variable is used to determine how to set up the STEPLIB environment for an
executable file.

You can set the variable in one of three ways:

Table 3: Three ways to set the STEPLIB environment variable (tcsh shell)

Statement Action

setenv STEPLIB CURRENT Passes on any currently active TASKLIB, STEPLIB, or JOBLIB
allocations from the invoker's MVS program search order
environment to the environment created for the executable
file to run in. Any STEPLIB environment in the invoker's
process image is re-created in the new process image for the
executable file when the file is invoked. This is the default
value that is set if no STEPLIB variable is specified.

If an application uses fork(), spawn(), or exec(), the
STEPLIB data sets must be cataloged.

setenv STEPLIB NONE Specifies that no STEPLIB environment should be set up for
executable files.

setenv STEPLIB DSN1:DSN2:DSN3 Sets up a library search order for the STEPLIB, in the order
that the data sets are specified. You can specify up to 255
fully qualified data set names, separated by colons. For
example:

setenv STEPLIB SMITH.C.LOADLIB:SMITH.PL1.LOADLIB

The specified data sets must be cataloged MVS load libraries
that you have security access to. The data sets specified here
are built into a STEPLIB environment for the executable file.

Restrictions on STEPLIB data sets
For executable files that have the set-user-ID or set-group-ID bit set, there are restrictions on the data
sets that can be built into the STEPLIB environment for the file to run in. The systems programmer

58 z/OS: UNIX System Services User's Guide

maintains a STEPLIB sanction list of data sets that can be included in the STEPLIB environment for such
executable files. Only data sets on that list are built into the STEPLIB environment for such files. If you
need a data set added to the list, contact your systems programmer.

Setting variables for a shell session
With the set and unset commands, you can set and unset variables for your shell session. These
variables control the way that the shell handles certain situations. To display the shell variables that are
currently set, type set . To turn on an option, enter the following command:

set name

where name is the name of the option you want to turn on. If you want an option turned on for every shell
session, put the set command in your .tschrc file.

To turn off an option, enter:

unset name

The following discussion highlights some of the options that you might find useful. For all the options, see
the information about set in the tcsh shell in the set command description in z/OS UNIX System Services
Command Reference.

Displaying current option settings
The command:

set

displays all current option settings.

Controlling redirection
The command:

set noclobber

indicates that you do not want the > redirection operator to overwrite existing files. When this option is on
and you specify the construct >file, the redirection works only if file does not exist. If you have this option
on and you really do want to redirect output into an existing file, you must use >|file (with an "or" bar after
the >) to indicate output redirection.

Preventing wildcard character expansion
The command:

set noglob

tells the shell not to expand wildcard characters in file names. This command is occasionally useful if you
are entering command lines that contain a number of characters that would normally be expanded.

Displaying input from a file
The command:

set xtrace

tells the shell to display its input on the screen as the input is read. This command lets you keep track of
material that comes from a file.

Customizing the tcsh shell 59

Displaying deletion verification
The command:

set rmstar

prompts you for deletion verification when you enter the rm command in conjunction with the * character.

Files accessed at termination
When you terminate the tcsh shell, the following files are read at logout in this order:

1. /etc/csh.logout
2. $HOME/.logout

60 z/OS: UNIX System Services User's Guide

Chapter 6. Working with z/OS shell commands

The shell is, above all, a programmer's interface. As a result, the shell commands are strongly slanted
towards the needs of a programmer. The z/OS shell has many general tools that can help any programmer.
In addition, there are a number of commands designed especially for the C programmer.

Specifying shell command options
Most of the commands discussed in this topic accept options. Shell command options are usually
specified by a minus sign (–) followed by a single character. For example, the ls command simply lists a
directory's contents in multiple columns on your screen. However:

ls –F

distinguishes between various file types when listing the contents of a directory. (See “Listing directory
contents” on page 195 for an example.)

ls –1

lists directory names in a single column.

Options consisting of a minus sign followed by a character are called simple options. You specify simple
options after the name of the command and before any other arguments for the command (that is,
arguments that are not options). For example, you would enter:

ls –1 dir1

to list the contents of dir1 in a single column.

Command options and arguments must be typed as single-byte characters. Additionally, delimiters such
as a slash, braces, and parentheses must be typed as single-byte characters.

The order of options and arguments is important. If you enter:

ls dir1 –F

ls lists the contents of dir1 and then tries to list the contents of the directory, or attributes of the file,
called –F.

As a special notation, most z/OS shell commands let you specify a double minus sign (--) to separate the
options from the nonoption arguments; -- means that there are no more options. Thus, if you really have
a directory named –F, you could enter:

ls -- –F

to list the contents of that directory or the file attributes.

The z/OS shell gives you a shorthand way to specify more than one simple option to a command. For
example, –t and –v are both simple options that you can specify with the cat command. (To find out
what these options do, read the cat command description in z/OS UNIX System Services Command
Reference.) You could enter:

cat –t –v file

or you could combine the two options into:

cat –tv file

© Copyright IBM Corp. 1996, 2018 61

The order of the options is not important:

cat –vt file

is equivalent to the previous version of the command.

Specifying options with accompanying arguments
In addition to simple options, some commands accept options that have accompanying arguments. Such
options look like simple options followed by additional information. The argument may be a number, a
string, the name of a file, or something else.

For example, if you read the ps command description in z/OS UNIX System Services Command Reference,
you will see that ps accepts an argument of the form:

–u userlist

When z/OS UNIX System Services Command Reference shows part of a command line in italics, the
italicized material is just a placeholder; when you actually use the command, you should fill in something
else in its place. In this case, the userlist should be a string of one or more UID numbers or login names
separated by commas and enclosed in single quotation marks. In the command:

ps –u 'macneil,wellie1'

the userlist string is macneil,wellie1. (If the string does not contain spaces, tabs, or other special
characters, you can actually omit the enclosing single quotation marks, but the command is often easier
to read if you use quotes anyway.) When executed, ps displays information for the specified users.

Help for shell command usage
If you incorrectly specify a command, a usage note for the command is displayed. The usage note
displays the proper format for the command. Often you can display a usage note deliberately if you
specify the command with a -? option.

For online help information about a command, see “Using the man command to get online help” on page
82.

Understanding standard input, standard output, and standard error
Once a command begins running, it has access to three files:

1. It reads from its standard input file. By default, standard input is the keyboard.
2. It writes to its standard output file.

• If you invoke a shell command from the shell, a C program, or a REXX program invoked from TSO
READY, standard output is directed to your terminal screen by default.

• If you invoke a shell command, REXX program, or C program from the ISPF shell, standard output
cannot be directed to your terminal screen. You can specify a z/OS UNIX file or use the default, a
temporary file.

3. It writes error messages to its standard error file.

• If you invoke a shell command from the shell or from a C program or from a REXX program invoked
from TSO READY, standard error is directed to your terminal screen by default.

• If you invoke a shell command, REXX program, or C program from the ISPF shell, standard error
cannot be directed to your terminal screen. You can specify a z/OS UNIX file or use the default, a
temporary file.

If the standard output or standard error file contains any data when the command completes, the file
is displayed for you to browse.

62 z/OS: UNIX System Services User's Guide

Using the shell: In the shell, the names for these files are:

• stdin for the standard input file.
• stdout for the standard output file.
• stderr for the standard error file.

The shell sometimes refers to these files by their file descriptors, or identifiers:

• 0 for stdin
• 1 for stdout
• 2 for stderr

For more information about the file descriptors that the shell supports, see the sh command description
in z/OS UNIX System Services Command Reference.

Using TSO/E: When you are invoking the BPXBATCH utility, you can specify these standard files in MVS
DD statements, TSO/E ALLOCATE commands, or DYNALLOC macros using the ddnames:

• STDIN for standard input
• STDOUT for standard output
• STDERR for standard error

For more information about BPXBATCH, see “The BPXBATCH utility” on page 145.

Using ISPF: When you run shell commands, REXX programs, and C programs from the ISPF shell, stdout,
and stderr cannot be directed to your terminal. You can specify a z/OS UNIX file, or use the default—a
temporary file. If it has any contents, the file is displayed for you to browse when the command or
program completes.

Redirecting command output to a file
Commands entered at the command line typically use the three standard files described previously, but
you can redirect the output for a command to a file you name. If you redirect output to a file that does not
already exist, the system creates the file automatically.

Most z/OS shell commands display information on your workstation screen, standard output. If you
redirect the output, you can save the output from a command in a file instead. The output is sent to the
file rather than to the screen. At the end of any command, enter:

>filename

For example:

cat file1 file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the information in the original
three files is concatenated into a single file, outfile.

When you redirect output with >filename and it is an existing file, the output writes over any information
that the file already contains. To append command output at the end of the file, use:

>>file name

instead. For example:

sort -u file1 >output 2>>outerr

Working with z/OS shell commands 63

redirects the result of the sort to the file named output (instead of standard output) and appends any
error messages to the file outerr, which is a record of errors encountered during various sorts.

Suppose you entered:

sort -u filea 2>&1 >output

In this command, you see two redirections:

• Error output from the sort is redirected to standard output (&1), the display screen.
• The result of the sort is redirected to the file named output.

Here is another example with two redirections, sending both standard error and standard output to a file.
This command produces the program hello and a listing with error messages in a file called hello.list:

c89 -o hello -V hello.c >hello.list 2>&1;

Redirecting input from a file
You can redirect input in much the same way that you redirect output. A command that normally takes
input from standard input can be redirected to take input from a file instead.

To send the file power to another user, issue:

mailx DEEJ <power

The file power becomes input to mailx, rather than your input from the keyboard.

Redirecting error output to a file
You can redirect error output from the workstation screen to a file, using 2>. (As you remember, 2 is the
file descriptor for stderr.) For example:

sort -u filea 2>errfile

sorts filea, checking for unique output records. Any messages regarding duplicate records are redirected
to a file named errfile.

If you want to append error output to an existing file, use 2>>.

If you do not care about seeing the error output, you can redirect it to /dev/null (also known as the bit
bucket). This is equivalent to discarding the error messages.

sort -u filea 2>/dev/null

Closing a file
The operating system has a limit on the number of streams to a file that a process can open. The shell
closes a stream for you when a shell script ends. However, to conserve on the number of active file
streams, you can close regular files when you are finished working with them in a shell script. To close a
regular file, use either of the following:

exec n<&-
exec n>&-

where n can be file descriptors 3 through 9.

Similarly, you can close standard output, standard input, and standard error when you do not need them.
For example, for an application that does not display anything, you may want to close standard output.
Here is the command syntax for those files:

64 z/OS: UNIX System Services User's Guide

exec 0<&- (close standard input)
exec 1>&- (close standard output)
exec 2>&- (close standard error)

Dumping nontext files to standard output
The od command can dump the contents of a file to standard output, your workstation screen, in several
different formats.

od file

dumps a file in octal.

od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check the actual contents of a
nontext file. Other dump formats are available.

Setting up an alias for a command
After you have used the shell for a while, you will probably find that there are some commands that you
use frequently. Rather than typing them over and over, you can set up an alias for these commands. An
alias is a personalized name that stands for all or part of a command. You can create an alias by entering:

alias name="string"

in response to the shell's usual prompt for input. This is not a normal command; it is an instruction to the
shell itself.

For example, suppose you have a hard time remembering that the mv command actually renames files.
Instead, you could set up a simple alias by entering this on your command line:

alias renam="mv"

From this point onward in your session, whenever the shell sees the command renam, the renam is
replaced with mv. The alias facility lets you create more usable commands.

Clearly, you could use an alias to save yourself some typing too. You could define c as an alias for cat.
Then you would enter:

c file

to get the effect of:

cat file

Tip: If you issue an exec sh, alias names are not exported. For information about how to put alias
definitions in your login script pointed to by the ENV variable, see “Customizing your shell environment:
The ENV variable” on page 38.

DBCS recommends that you use single-byte characters when specifying an alias name, because the
POSIX standard states that alias names must contain only characters in the POSIX portable character set.

Defining an alias
If you will be using an alias frequently, put the alias command in your profile file ($HOME/.profile).
When you issue the OMVS command or start a shell with sh –L, the shell reads the aliases from the file
and sets them up immediately. That way, you do not have to type them in every time you start using the
shell. See “Customizing your .profile” on page 35 for more information about customizing your profile file.

Working with z/OS shell commands 65

To display all the currently defined aliases, you just enter:

alias

and the shell displays them. You will see a number of aliases that you did not set up. These are predefined
aliases that the shell always creates.

When the shell replaces an alias, it checks to see if the result is another alias. The shell continues to check
for and replace aliases until no aliases remain or the replacement would result in an infinite loop of alias
expansion. For example, the shell defines the alias functions as follows:

alias functions="typeset -f"

Now, you might say to yourself, “Why do I need to type functions when I could just set up the alias f?”
You could therefore enter:

alias f=functions

Then you enter:

f abc

the shell replaces f with functions, which the shell in turn replaces with:

"typeset -f"

Redefining an alias for a session
You can redefine an alias during a session, even if it is defined in your profile file. If you enter the
command:

alias name="string"

during a session and name is already an alias, the shell forgets the old meaning and uses the new
meaning from then on.

Setting up an alias for a particular version of a command
If you tend to use a command with the same options every time, you may want to set up an alias for the
command with those particular options. Let's take an example. The grep command searches through
files and prints out lines that contain a requested string. For example:

grep hello file

displays all the lines of file that contain the string hello. Normally, grep distinguishes between
uppercase and lowercase letters; this means, for example, that the search in the previous example does
not display lines that contain HELLO, Hello, and so forth. If you want grep to ignore the case of letters
as it searches, you must specify the –i option, as in:

grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the –i version of grep most of the time, you can define the alias:

alias grep="grep -i"

From this point on, if you use the command:

grep string file

66 z/OS: UNIX System Services User's Guide

it is automatically converted to:

grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an –i option that prompts you to
confirm the deletion. The file name and a question mark are displayed. For example, if you entered rm -i
file1 and file1 is in your working directory, you would see the prompt:

file1: ?

before the system actually removes the file. You then enter y (yes) or n (no) in response. If you like this
extra bit of safety, you might define:

alias rm="rm -i"

After this, when you call rm, it automatically checks with you before deleting a file, just to make sure that
you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is used in the alias, but
this is so common that the z/OS shell checks specifically for an alias of the same name, and does the
correct thing.

If you find yourself using the same option every time you call a command, you might consider creating an
appropriate alias so that the shell automatically adds the option. Of course, the best place to define this
alias is in your .profile file; then the alias is set up every time you invoke the shell.

Using alias tracking
Alias tracking can reduce the time the shell spends searching your search path (specified with the PATH
variable) for a command; it helps shell scripts run faster. A tracked alias is a shell-created alias that is the
full pathname for a command. The shell automatically tracks everything it finds in the default path for
executables (/bin). For example, if you enter the ps command, the shell creates the alias:

ps="/bin/ps"

To use alias tracking for commands in other locations, enter the command:

set -o trackall

The first time you enter a command, the shell creates an alias that is the full pathname of the command.
For example, if the user marcw entered the hello command and the shell tracked the command, it
would create the alias:

hello="/u/marcw/bin"

Each time you enter a command, the shell uses its tracked alias, instead of searching the PATH for the
command.

To list your tracked aliases, enter the command:

alias -t

To turn off alias tracking of all commands, enter the command:

set +o trackall

Then commands found in directories other than /bin are not tracked. When the PATH search finds a
command in /bin, the pathname will always be tracked.

To remove tracked aliases, use:

alias -r

Working with z/OS shell commands 67

Turning off an alias
If you have set up an alias like the one previously described for rm, you may find that you do not want the
alias to apply in some situations. For example, when you delete a huge number of files, you probably do
not want rm to ask if it is okay to delete each one. In this situation, you have several options:

• Get rid of the alias entirely. The command:

unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get the real rm command.
• Escape the alias. If you put a backslash in front of an alias, the shell uses the real command rather than

the alias. For example:

\rm file

• Specify the full pathname. For example:

/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias substitution when you
specify a command as a pathname.

These alternatives should help you get around options that you have automatically associated with a
command.

Combining commands
There are several simple ways you can combine several commands on a single command line:

• You can run a series of commands, one after the other:

– Using a semicolon (;)
– Using && and ||

• You can run more than one command concurrently:

Using a pipe (|) or a filter with a pipe

The output from the first command is piped to the next command as the first command is running.

Using a semicolon (;)
The shell lets you enter several commands on the same command line. To do this, just use the semicolon
character to separate the commands; for example:

cd mydir ; ls

Also, if you have defined the alias:

alias l="ls –l"

you can enter:

cd mydir ; l

because you can use aliases such as l after a semicolon.

Using && and ||
When stringing together more than two commands, you may want to control the running of the second
command based on the outcome of the first command. You can use:

68 z/OS: UNIX System Services User's Guide

&&
If the command that precedes && completes successfully, the command following && is run. Leave a
space on either side of the && operator: command && command.

||
If the command that precedes || fails, the command following || is run. Leave a space on either side
of the || operator: command || command.

Using a pipe
The output from one command can be piped in as input to the next command. Two or more commands
linked by a pipe (|) are called a pipeline. A pipeline is written as:

command | command | ...

You enter the commands on the same line and separate them by the "or-bar" character |.

Many z/OS shell commands are well suited to being used in a pipeline. For example, the grep command
searches for a particular string in input from a file or standard input (the keyboard). A command such as:

history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded commands in your history
file. The command:

ls –l | grep "Jan"

uses ls to obtain information about the contents of the working directory and uses grep to search
through this information and display only the lines that contain the string Jan. The pipeline displays the
files that were last changed in January.

A filter is a command that can read from standard input and write to standard output. A filter is often used
within a pipeline. In the following example, grep is the filter:

ps -e | grep cc | wc -l

lists all of your processes that are currently active in the system and pipes the output to grep, which
searches for every instance of the string cc. The output from grep is then piped to wc, which counts every
line in which the string cc occurs and sends the number of lines to standard output.

Using substitution in commands
Another shell feature that is useful for programmers is command substitution. When it encounters a
construct of the form:

$(command)

or:

 `command `

in an input command line, the shell runs the given command. It then puts the output of the command,
after converting newlines into spaces, back into the command line, replacing command, and runs the new
command line. This is called command substitution.

You may find the $() syntax easier to use for long command lines. However, the ` ` (backward
apostrophes) syntax is more traditional and accepted on older UNIX shells.

Working with z/OS shell commands 69

As an example of how a programmer could use command substitution, consider a file called srclist,
containing the following list of source code file names: alpha.c, beta.c, and gamma.c. If you enter the
command:

grep printf $(cat srclist)

the shell runs cat against the contents of srclist, and rewrites the original command line, so that this line
appears as:

grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines that contain the string
printf. This type of construct quickly locates all references to a particular variable or function in the
source code for a program.

Using the find command in command substitution constructs
The find command is useful in command substitution constructs. find displays the names of files that
have specified characteristics. For example:

find dir1 –name "*.c"

finds all files in the directory dir1 whose names match the wildcard pattern *.c. In other words, it finds
all files in that directory with names having the .c suffix.

The command:

ls -l $(find dir1 –name "*.c")

finds all the .c files and then uses ls to display information about these files.

Complicating things further, you could enter

ls -l $(find dir1 –name "*.c") | grep -F "Nov"

This sets up a pipeline that displays ls information only for files that were last changed in November. (To
be perfectly accurate, it also displays information about files that have the string Nov in their names, too.)

Another useful find option has the form:

find path –ctime number

This says that you want to find files that have changed in the last number of days. For example:

ls -l $(find dir –ctime 1)

displays ls information about all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the file names only if you specify the –
print option. Thus, you would have to enter:

find dir –name "*.c" –print

to get the results just described. The z/OS UNIX find command automatically prints its results without –
print. However, if you have an existing shell script or compatibility with UNIX systems is important to
you, you can use –print.

For more information about the find command, see the find command description in z/OS UNIX System
Services Command Reference.

Characters that have special meaning to the shell

70 z/OS: UNIX System Services User's Guide

Certain characters have special meaning to the shell; these are often called metacharacters. If you enter a
command that contains any of these characters, the shell often assumes that you are using the character
in its special sense.

Characters used with commands
Character

Usage
|

Pipes the output from one command to a second command; separates commands in a pipeline.
||

Separates two commands. If the command preceding || fails, it runs the following command
(Boolean OR operator).

&
Runs a command in the background, if placed at the end of a command line.

Used in redirection, &0 represents standard input, &1 represents standard output, and &2 represents
standard error.

&&
Separates two commands. If the command preceding && succeeds, it runs the following command
(Boolean AND operator).

;
Separates sequential commands; allows you to enter more than one command on the same line.

()
Around a sequence of commands, groups those commands that are to run as a separate process in a
subshell environment. The commands run in a separate execution environment: changes to variables,
the working directory, open files, and so on, will not remain in effect after the last command finishes.

(␠) is also used to group mathematical operations.

{ }
Around a sequence of commands, groups those commands that are run in the current shell
environment. Changes to variables, etc., will affect the current shell.

Both { and } are reserved words to the shell. To make it possible for the shell to recognize these
symbols, you must enter a blank or <newline> after the {, and a semicolon or <newline> before the }.

#
Following a command in a shell script, indicates the beginning of a comment.

$
At the beginning of a string, indicates that it is a variable name.

\
The backslash character turns off the special meaning of the character that follows it. For more
information, see “Using a special character without its special meaning” on page 73.

' '
A pair of single quotation marks turns off the special meaning of all characters within the quotes. For
more information, see “Using a special character without its special meaning” on page 73.

" "
A pair of double quotation marks turns off the special meaning of the characters within the quotes,
except for $, `, ", and \. See “Using a special character without its special meaning” on page 73 for
more information.

Characters used in file names
Character

Usage

Working with z/OS shell commands 71

/
Separates the components of a file's pathname.

~
(Tilde) symbolizes your home directory when used by itself. When used together with a user ID, ~
symbolizes that user's home directory. For example:

 ~susanb/.profile

refers to user SUSANB's .profile file.

You can also use the ~ to refer to your previous working directory; for example, the command

cd ~-

returns you to the directory you were previously working in.

.
When used as a component of a pathname, indicates the working directory.

..
When used as a component of a pathname, indicates the parent directory.

?
Used as a wildcard character that can match any one character, except a leading dot (.).

*
Used as a wildcard character that can match a sequence of zero or more characters, except a leading
dot (.).

Redirecting input and output
Character Usage Example

< Redirects input to a specified file. “Redirecting input from a file” on page 64.

> Redirects output to a specified
file.

“Redirecting command output to a file” on page 63.

>> Redirects output to be appended
to the end of the specified file.

“Redirecting command output to a file” on page 63.

2> Redirects error output to a
specified file.

“Redirecting error output to a file” on page 64.

72 z/OS: UNIX System Services User's Guide

Character Usage Example

<<text Reads standard input until it
encounters text.

This is used in what is called a “here-document.”
Input is usually typed on the screen or in a shell
script. For example, this script creates a file called
hello.c, compiles it into hello, and then executes it:

echo "Creating program source..."
if cat > hello.c <<End_Of_File
main() {
 puts("Hello, world!");
}
End_Of_File
then
 echo "Compiling program..."
 if make hello
 then
 echo "Executing program..."
 exec ./hello
 else
 exit $? # make failed
 fi
else
 exit $? # cat failed
 fi

When you run the shell script, it runs the cat >
hello.c command using the input between the
two End_of_File strings.

Using a special character without its special meaning
If you do not want to use the special sense of the metacharacters, instruct the shell to ignore them by
escaping them or quoting them. To do this, you use:

\
' '
" "

The backslash
The backslash character (\) turns off the special meaning of the character that follows it. For example:

echo it\'s me

prints:

it's me

If you just try:

echo it's me

without the backslash, the shell prints a > prompt after you press <Enter>instead of the usual $. The >
prompt is a continuation prompt. An apostrophe ' without a backslash is taken to be the start of a string
and the shell assumes that the string keeps going until you type another apostrophe, even if that goes on
for several lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know its special meaning and
you want that meaning. Because a backslash itself is a special character, you must type two of them
whenever you want a single backslash.

A pair of single quotation marks (' ')
A pair of single quotation marks (' ') turns off the special meaning of all characters within the quotes.

Working with z/OS shell commands 73

A pair of double quotation marks (" ")
A pair of double quotation marks (" ") turns off the special meaning of the characters within the quotes,
except for $, `, ", and \.

Using a wildcard character to specify file names
If you have used other operating systems, you are probably familiar with the concept of wildcard
characters. (In an MVS context, the wildcard character is referred to as a global character, or pattern-
matching character.) A wildcard character is a special character that may be used to save typing in file
names in shell commands. The z/OS shell recognizes several different wildcard characters:

*
?
[]

The * character
The asterisk (*) stands for any sequence of zero or more characters, except a leading dot. You can use the
asterisk in file names. For example:

ls aa*

lists all files in the working directory with names that begin with aa.

The command:

mv *.c dir1/dir2

moves every file with the .c suffix from your working directory to the directory dir1/dir2.

You can use the * wildcard character in directory names as well as in file names. For example:

cat */*.c

displays the contents of all files that have the .c suffix, in directories under your working directory.

The ? character
In a pathname, the question mark ? can stand for any single character, except a leading dot. For example:

file.?

refers to any and all files with names that consist of file. followed by any single character. This can mean
file.a, file.b, file.c, and so on ... whichever of the files currently exist.

You can combine * and ?.

ls *.?

displays the names of all files under the working directory that have one-character file name suffixes.

Again, you can use the ? in directory names as well as file names. For example:

ls ???/*

shows all files in every directory under your working directory that have a three-character name.

74 z/OS: UNIX System Services User's Guide

The square brackets
Square brackets containing one or more characters stand for any one of the contained characters. For
example:

[bch]at

matches bat, cat, or hat.

ls [abc]*

lists all files in the working directory the names of which start with a, b, or c, followed by any other
sequence of zero or more characters. In other words, it lists all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the first character in the
sequence, a hyphen (-), and the last character. For example:

[a–m]

This matches any character from a through m.

Suppose, for example, that you want to copy the contents of the working directory into two separate
directories. You might enter:

cp [a–m]* dira

to copy all files with names beginning with the letters a through m to the directory dira, and then issue
the second command:

cp [n–z]* dirb

to copy the rest of the files to the directory dirb. A command such as:

rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the construct matches any
character that is not inside the brackets. For example:

ls [!a–m]*

lists any file that does not begin with one of the letters in the range a through m.

In the same way:

rm [!0-9]*

removes any file with a name that does not start with a digit.

Retrieving previously entered commands

In the shell, you can retrieve previously issued commands using:

• The history command, combined with the r command
• The two retrieve function keys that are part of the TSO/E OMVS command interface to the shell
• Command-line editing, when you are using an asynchronous terminal interface

Working with z/OS shell commands 75

Retrieving commands from the history file
The shell records each command that you enter in a file under your home directory. This file is called the
history file; its name is .sh_history.If you enter the command:

history

the shell displays the current contents of your history file. Each command is numbered.

You can rerun any of the commands in your history file by typing r, followed by a space, followed by the
number of the command you want to use. Think of r as the redo command.

For example, suppose that you are a programmer and you enter a complicated command to compile part
of a program. The program contains a syntax error, so you call a text editor to edit the source code and
correct the problem. Now you want to run the same compile command on the corrected program. You
might save yourself a good deal of typing by using:

history

to find out the number of the previous compile command; you can then run the command with r.

Another time-saver is to specify your shell prompt as:

PS1='(!)$'

in your .profile. The shell prompt is then preceded by the number assigned to the command in the
command history file.

This is how you use the command numbers to enter a command. To repeat command number 14, enter:

r 14

The shell displays the original command 14 in the output area of the screen and then runs it. If you get
another error, you can correct it, and then compile again with another r 14. You can perform the
operation many times, but you have to type the original only once.

If you type r followed by a space, followed by a string of characters (not beginning with a digit), the shell
checks backward through the history file and runs the most recent command that begins with the given
string. For example, let's look at the compilation example. Suppose that you are using the c++ command
to compile your program. Then:

r c++

looks back through the history and runs the most recent c++ command. You do not even have to check on
the number of the command you want to enter. The shell displays the selected command in the output
area of the screen and then runs it.

This backward-search feature of r can search for aliases as well as normal commands. r searches for the
beginning of the command line as you typed it, not the way that the line looked after the alias was
replaced.

If you enter r without a number after it, the shell repeats the most recent command.

Editing commands from the history file
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c, and so on that you want
to compile with similar c89 commands. This situation is a little different from the one discussed in the
previous topic. You do not want to rerun the same command for each file; the command has the same
form each time, but you have to specify in a new file name each time.

You can still do this using the history file. The command:

r old_string=new_string command

76 z/OS: UNIX System Services User's Guide

runs a previous command but replaces the first occurrence of the old string with the new string. For
example, suppose you compile file1.c with:

c89 options file1.c

Then the command:

r file1=file2 c89

tells the shell to search back for the most recent c89 command and change file1 to file2. The shell makes
this change, and then displays and runs the modified command.

r file2=file3 c89

performs the same kind of operation, changing file2 in the previous command to file3 and then going
ahead with the compilation. This saves you the trouble of retyping all the options for the command.

Entering alias displays all the currently defined aliases. You will see a number of aliases that you didn't
set up; for example:

history="fc –l"

The history command is actually a predefined alias for the fc command with the –l option. The fc
command is used to display and edit commands in the history file. Generally, it is easier to remember to
type history, so the shell predefines this alias.

If you have displayed the predefined aliases, you probably noticed that r is also a predefined alias. It also
stands for a version of the fc command. As with history, the r alias was created because it's easier to
use and read than the straight fc command. For full details about fc, see the fc command description in
z/OS UNIX System Services Command Reference.

Using the retrieve function keys
When you are using the OMVS interface, there are two function key settings for retrieving commands:
Retrieve

This key performs a "backward retrieve" function. It retrieves a saved command from a stack of saved
input lines, starting with the most recent and moving down to the oldest available line.

FwdRetr
This key is used with the Retrieve key to retrieve commands from the stack of saved input lines. If you
press the Retrieve key one too many times and go past the line you want, you can press the FwdRetr
key to display the line that was previously retrieved by the Retrieve key.

Press the Retrieve key repeatedly until the command you want to use is displayed on the command line.
Once the command is displayed, you can modify the command or use it as it is displayed. Press <Enter>
to run the command.

Command-line editing
When you use rlogin or telnet to login to the shell, you can use command-line editing. Command-line
editing lets you access commands from your history file, edit them, and run the result. You have already
seen this process before, when reading about some of the features of the r command.

Command editing is useful at those times when you are running the same sequence of commands, or
slight variations on the same sequence of commands. The point of command editing is to save yourself
the trouble of typing the same thing over and over again—look especially for long commands that normally
require a lot of typing. Command editing is also useful when you have made a mistake in typing a
command line and wish to correct it.

Working with z/OS shell commands 77

Using the vi command editor

If you run the command:

set -o vi

or

export EDITOR=vi

it tells the shell that you want the ability to edit commands the way that you normally edit text with vi;
you are set up for vi command editing. Whenever the shell prompts you for input, it is as if the shell puts
you into vi insert mode on a new line at the end of the history file. You can type in a new command just as
you normally would.

You can also press <Esc> to enter a vi-like command mode. When you enter command mode, you can
use the usual cursor movement commands to move around on the command line, or to move up and
down in the history file. For example:

• Press the k key to move back to the previous line in the history file (the last command line you entered).
Press the k key again, and you move to the line before that.

• Press j and you move forward in the history file.

In this way it is simple to retrieve recent commands from the history file. You can then edit them using
standard vi commands. For example, you can use $ to move to the end of the line, and A to begin
appending text to the end of the line. When you have edited the line to produce the command that you
want to run, simply press <Enter> to run that line.

As you might expect, you can use these search commands:

/string
?string

to search backwards and forwards through the history file. You can edit the command line with these vi
commands:
w

Move to next word
b

Move to previous word
d

delete
c

change
a

append
i

insert
u

undo
and many of the other vi commands. For a complete list of available commands, see the shedit command
description in z/OS UNIX System Services Command Reference.

Using the emacs command editor

To set up for emacs command editing, enter:

set -o emacs

This lets you use commands identical to emacs commands to edit your shell command line. For more
information, see the description of shedit in z/OS UNIX System Services Command Reference.

78 z/OS: UNIX System Services User's Guide

Using record-keeping commands
Record-keeping commands can be very helpful for programmers. For example, suppose you have a
program that is split into several source files. For the sake of simplicity, assume that the source files all
have the extension .c and are all stored in a subdirectory called src. (To read about extensions, see
“Naming files” on page 199.)

It is often the case that you want to find out which source files in the subdirectory refer to a particular
variable or function. You can do this very simply with the command:

grep 'name' src/*.c

The command checks all the appropriate files in the subdirectory src and displays the lines that contain
the given name. Each line is labeled with the name of the file that contains the line. You can quickly find
the use of a function or data object in source files.

As another example of using record-keeping commands, suppose that you are working on a large program
and every few days you back up the source code for the program by copying it to a directory in a different
file system (as a precaution). You would like to compare the current version of your source files with one
of the saved versions, to find out what changes have been made between the two. The command:

diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons possible.

The cksum command gives a checksum for each file. If applied to two versions of what was at one time
the same file, cksum gives a convenient way to tell if the files are still the same. It does not, however,
indicate what the differences are.

The find command also has applications to programming. For example, suppose you are looking for a
particular C source program but cannot remember where it is stored.

find / –name '*.c'

searches all the files and file systems, starting at the root, and displays the names of all files with the .c
extension.

Finding elements in a file and presenting them in a specific format
awk is a powerful command that can perform many different operations on files. The general purpose of
awk is to read the contents of one or more files, obtain selected pieces of information from the files, and
present the information in a specified format.

One simple way to use awk is with a command line with the form:

awk '/regexp/ {action}' file

This asks awk to obtain information from the specified file. awk obtains the information by performing the
specified action on every line in the file that contains a string matching the given regular expression,
regexp. (For further information, see Regular expressions (regexp) in z/OS UNIX System Services
Command Reference.) For example:

awk '/abc/ {print}' file

displays every record in the file that contains the string abc.

For more discussion on using awk, see Appendix B, “Using awk,” on page 281.

Working with z/OS shell commands 79

Timing programs
The time command lets you time programs to find out how much processor time they actually require.
You might use this to compare two versions of a program to see if one runs faster than the other. You can
run a program with:

time command-line

where command-line is a command line that invokes the program you want to time. time runs the
program and displays:

• The total time the program took to execute, labeled real
• The total time spent in the user program, labeled user
• The central processor time spent performing system services for the user, labeled sys

For more information, see the time command description in z/OS UNIX System Services Command
Reference.

Using the passwd command
You can change a user's password or password phrase by using the passwd command:

passwd [-u userid]

The passwd command changes the login password or password phrase for the user ID specified. If userid
is omitted, the login name associated with the current terminal is used. You are prompted for the new
password or password phrase.

For example:

passwd

changes the password or password phrase for the invoker. The invoker is prompted for the old password
or password phrase and then for the new value.

Non-superusers can change the password or password phrase for another user if they know the user ID
and the current password or password phrase. This example changes the password or password phrase
for user ID steve:

passwd -u steve

For more information about the passwd command, see the passwd command description in z/OS UNIX
System Services Command Reference For information on setting up RACF to enable password phrase
support, see z/OS Security Server RACF Security Administrator's Guide.

Switching to superuser or another ID
With the su command, you can switch to any user ID, including the superuser. A user can switch to
superuser authority (with an effective UID of 0), if the user is permitted to the BPX.SUPERUSER resource
in the FACILITY class within the Resource Access Control Facility (RACF). Either the ISPF shell or the su
shell command can be used for switching to superuser authority.

If you do not specify a user ID, the su command changes your authorization to that of the superuser. If
you specify a user ID, su changes your authorization to that of the specified user ID.

When you switch to superuser (UID 0) without specifying a user ID, you keep your MVS identity (TSO/E
ID).You keep your access authority to MVS data sets, while you are gaining authority to access any files.

80 z/OS: UNIX System Services User's Guide

When you change user ID by specifying a user ID and password or password phrase, you assume the MVS
identity of the new user ID even if the user ID has UID 0.

If you use the –s option on the su command, you are not prompted for a password. Use this option if you
have access to the BPX.SRV.userid SURROGAT class profile. The userid is the MVS user ID associated with
the target UID.

To return to your own user ID, type:

exit

You go back to the shell in which you entered the su command.

For more information, see the su command in z/OS UNIX System Services Command Reference.

Using the whoami command
The whoami command displays a username associated with the effective user ID, unlike the who am i
command which displays the login name.

For example, if you login as 'user1' but then you use the su command to change to 'user2':

command returned
who am I user1
whoami user2

For more information about the whoami command, see the whoami command description in z/OS UNIX
System Services Command Reference.

Running a TSO/E command
To run a TSO/E command from the shell or in a shell script, simply preface the TSO/E command with
either the tso or tsocmd shell command.

Using the tso command
To run a TSO/E command from the shell or in a shell script, you can preface the TSO/E command with the
tso shell command; for example:

tso -t tso_command

There are two options you can use:

• Specify the -t option to run a command through the TSO/E service routine. The command output is
written to stdout. If you specify a relative path name, the command looks for the file in your current
directory.

Restriction: TSO/E has some restrictions on the type of commands that can be run using the TSO/E
service routine (mini-TSO environment). In summary, you cannot run the following commands in this
environment:

– Commands that run authorized
– FIB (foreground initiated background) commands
– Other commands that require the TSO/E task structure; for example, interactive commands such as
oedit, where interactive means that the user can interact with the command processing while
issuing additional terminal input (subcommands, function keys). For example, once the oedit
command is entered, the user can enter more subcommands to add more lines and then quit or exit
the command.

For a full description of the restrictions, see the information on IKJTSOEV in z/OS TSO/E Programming
Guide.

Working with z/OS shell commands 81

• Specify the -o option to run a TSO command as if it had been entered on the OMVS command line and
run using the TSO subcommand or function key. If you use a relative path name, the command looks for
the file in the working directory of your TSO/E session, which is typically your home directory.

If no option is specified, the following rules are applied in this order:

1. If stdout is not a tty, the TSO service routine is used since it is possible that the command output is
redirected to a file or piped to another command. Otherwise,

2. If the controlling tty supports 3270 pass-through mode, OMVS is used. Otherwise,
3. The TSO service routine is used.

See “Understanding standard input, standard output, and standard error” on page 62 for more
information about stdin, stdout, and stderr.

The tso command supports several environment variables. For more information about the tso
command and the environment variables that are associated with it, see z/OS UNIX System Services
Command Reference.

Using the tsocmd command
You may also use the tsocmd shell command to run a TSO/E command from the shell or in a shell script.

Unlike the tso shell command, the tsocmd shell command can be used to issue authorized TSO
commands. For more information about the tsocmd shell command and the environment variables
associated with it, see z/OS UNIX System Services Command Reference.

Using the man command to get online help
Use the man command to get help information about a shell command. The man page is displayed in your
shell session, and you can work in the shell while viewing the command. The man syntax is:

man command_name

• To scroll the information in a man page, press <Enter>.
• To end the display of a man page, type q and press <Enter>.

To search for a particular string in a system that has a list of one-line command descriptions, use the -k
option:

man -k string

For example, to produce a list of all the shell commands for editing, you could type:

man -k edit

You can use the man command to view descriptions of TSO/E commands. To do this, you must prefix all
commands with tso.

To view a description of the MOUNT command, enter:

man tsomount

You can also use the man command to view descriptions of dbx subcommands. To do this, you must prefix
all subcommands with dbx. For example, to view a description of the dbx alias subcommand, enter:

man dbxalias

For complete information about the man command, see man - Display sections of the online reference
manual in z/OS UNIX System Services Command Reference.

82 z/OS: UNIX System Services User's Guide

Shell messages
Messages issued by the z/OS shell and utilities are prefixed with the letters FSUM. The shell messages are
documented in z/OS UNIX System Services Messages and Codes.

Working with z/OS shell commands 83

84 z/OS: UNIX System Services User's Guide

Chapter 7. Working with tcsh shell commands

The shell is, above all, a programmer's interface. As a result, the shell commands are strongly slanted
towards the needs of a programmer. The tcsh shell has many general tools that can help any programmer,
and is specifically designed to have syntax similar to the C programming language. In addition, there are a
number of commands designed especially for the C programmer.

Specifying shell command options
Most of the commands discussed in this topic accept options. Shell command options are usually
specified by a minus sign (–) followed by a single character. For example, the ls command simply lists a
directory's contents in multiple columns on your screen. However:

ls –F

distinguishes between various file types when listing the contents of a directory. (See “Listing directory
contents” on page 195 for an example.)

ls –1

lists directory names in a single column.

Options consisting of a minus sign followed by a character are called simple options. You specify simple
options after the name of the command and before any other arguments for the command (that is,
arguments that are not options). For example, you would enter:

ls –1 dir1

to list the contents of dir1 in a single column.

Command options and arguments must be typed as single-byte characters. Additionally, delimiters such
as a slash, braces, and parentheses must be typed as single-byte characters.

The order of options and arguments is important. If you enter:

ls dir1 –F

ls lists the contents of dir1 and then tries to list the contents of the directory, or attributes of the file,
called –F.

As a special notation, most tcsh shell commands let you specify a double minus sign (--) to separate the
options from the nonoption arguments; -- means that there are no more options. Thus, if you really have
a directory named –F, you could enter:

ls -- –F

to list the contents of that directory or the file attributes.

The tcsh shell gives you a shorthand way to specify more than one simple option to a command. For
example, –t and –v are both simple options that you can specify with the cat command. (To find out
what these options do, read the cat command description in z/OS UNIX System Services Command
Reference.) You could enter:

cat –t –v file

or you could combine the two options into:

cat –tv file

© Copyright IBM Corp. 1996, 2018 85

The order of the options is not important:

cat –vt file

is equivalent to the previous version of the command.

Specifying options with accompanying arguments
In addition to simple options, some commands accept options that have accompanying arguments. Such
options look like simple options followed by additional information. The argument may be a number, a
string, the name of a file, or something else.

For example, if you read the ps command description in z/OS UNIX System Services Command Reference,
you will see that ps accepts an argument of the form:

–u userlist

When z/OS UNIX System Services Command Reference shows part of a command line in italics, the
italicized material is just a placeholder; when you actually use the command, you should fill in something
else in its place. In this case, the userlist should be a string of one or more UID numbers or login names
separated by commas and enclosed in single quotation marks. In the command:

ps –u 'macneil,wellie1'

the userlist string is macneil,wellie1. (If the string does not contain spaces, tabs, or other special
characters, you can actually omit the enclosing single quotation marks, but the command is often easier
to read if you use quotes anyway.) When executed, ps displays information for the specified users.

Help for shell command usage
If you incorrectly specify a command, a usage note for the command is displayed. The usage note
displays the proper format for the command. Often you can display a usage note deliberately if you
specify the command with a -? option.

For online help information about a command, see “Using the man command to get online help” on page
82.

Understanding standard input, standard output, and standard error
Once a command begins running, it has access to three files:

1. It reads from its standard input file. By default, standard input is the keyboard.
2. It writes to its standard output file.

• If you invoke a shell command from the shell, a C program, or a REXX program invoked from TSO
READY, standard output is directed to your terminal screen by default.

• If you invoke a shell command, REXX program, or C program from the ISPF shell, standard output
cannot be directed to your terminal screen. You can specify a z/OS UNIX file or use the default, a
temporary file.

3. It writes error messages to its standard error file.

• If you invoke a shell command from the shell or from a C program or from a REXX program invoked
from TSO READY, standard error is directed to your terminal screen by default.

• If you invoke a shell command, REXX program, or C program from the ISPF shell, standard error
cannot be directed to your terminal screen. You can specify a z/OS UNIX file or use the default, a
temporary file.

If the standard output or standard error file contains any data when the command completes, the file
is displayed for you to browse.

86 z/OS: UNIX System Services User's Guide

Using the shell: In the shell, the names for these files are:

• stdin for the standard input file.
• stdout for the standard output file.
• stderr for the standard error file.

Using TSO/E: When you are invoking the BPXBATCH utility, you can specify these standard files in MVS
DD statements, TSO/E ALLOCATE commands, or DYNALLOC macros using the ddnames:

• STDIN for standard input
• STDOUT for standard output
• STDERR for standard error

For more information about BPXBATCH, see “The BPXBATCH utility” on page 145.

Using ISPF: When you run shell commands, REXX programs, and C programs from the ISPF shell, stdout,
and stderr cannot be directed to your terminal. You can specify a z/OS UNIX file, or use the default—a
temporary file. If it has any contents, the file is displayed for you to browse when the command or
program completes.

Redirecting command output to a file
Commands entered at the command line typically use the three standard files described previously, but
you can redirect the output for a command to a file you name. If you redirect output to a file that does not
already exist, the system creates the file automatically.

Most shell commands display information about your workstation screen, standard output. If you redirect
the output, you can save the output from a command in a file instead. The output is sent to the file rather
than to the screen. At the end of any command, enter:

>filename

For example:

cat file1 file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the information in the original
three files is concatenated into a single file, outfile.

When you redirect output with >filename and it is an existing file, the output writes over any information
that the file already contains. To append command output at the end of the file, use:

>>filename

instead.

Another example:

(sort -u file1 >output) >&outerr

redirects the result of the sort to the file named output (instead of standard output) and redirects any
error messages to the file outerr, which is a record of errors encountered during various sorts.

Suppose you entered:

sort -u filea >output

In this command, you see two redirections:

• Error output from the sort is redirected to standard output, the display screen.

Working with tcsh shell commands 87

• The result of the sort is redirected to the file named output.

Here is another example of redirection, sending both standard error and standard output to a file. This
command produces the program hello and a listing with error messages in a file called hello.list:

c89 -o hello -V hello.c >&hello.list

Redirecting input from a file
You can redirect input in much the same way that you redirect output. A command that normally takes
input from standard input can be redirected to take input from a file instead. For example, with this mailx
command, you can send the file lessons to another user.

mailx JAYD <lessons

The file lessons becomes input to mailx, rather than your input from the keyboard.

Redirecting error output to a file
You can redirect error output from the workstation screen to a file. For example:

(sort -u filea >dev/tty) >& outerr

sorts filea, checking for unique output records. Any messages regarding duplicate records are redirected
to a file named outerr.

And if you do not care about seeing the error output, you can just redirect it to /dev/null, also known as
the bit bucket. This is equivalent to discarding the error messages.

(sort -u filea >/dev/tty) >& /dev/null

Dumping nontext files to standard output
The od command can dump the contents of a file to standard output, your workstation screen, in several
different formats.

od file

dumps a file in octal.

od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check the actual contents of a
nontext file. Other dump formats are available.

Setting up an alias for a command
After you have used the shell for a while, you will probably find that there are some commands that you
use frequently. Rather than typing them over and over, you can set up an alias for these commands. An
alias is a personalized name that stands for all or part of a command. You can create an alias by entering:

alias name "string"

in response to the shell's usual prompt for input. This is not a normal command; it is an instruction to the
shell itself.

88 z/OS: UNIX System Services User's Guide

For example, suppose you have a hard time remembering that the mv command actually renames files. To
make life easier for yourself, you could set up a simple alias by entering this on your command line:

alias renam "mv"

From this point onward in your session, whenever the shell sees the command renam, the renam is
replaced with mv. The alias facility lets you create more usable commands.

Clearly, you could use an alias to save yourself some typing too. You could define c as an alias for cat.
Then you would enter:

c file

to get the effect of:

cat file

Defining an alias
If you will be using an alias frequently, put the alias command in your profile file ($HOME/.tcshrc). That
way, you do not have to type them in every time you start using the shell. See “Understanding the startup
files” on page 49 for more information about customizing your startup files.

To display all the currently defined aliases, you just enter:

alias

and the shell displays them.

Arguments in aliases

Any arguments that follow an alias are treated just as if they had been following the command that the
alias stands for. For example, if you define the alias f as follows:

alias f "ls"

the shell replaces f with ls, which is the command to list files in a directory.

You can refer to arguments in an alias by simply adding them at the end of the alias as you would with a
command. For example:

f -la

would perform the ls command with the arguments la, which will list all the files in the directory in a
long directory listing format. And,

f /bin

will list the contents of the /bin directory.

Redefining an alias for a session
You can redefine an alias during a session, even if it is defined in your profile file. If you enter the
command:

alias name "string"

during a session and name is already an alias, the shell forgets the old meaning and uses the new
meaning from then on.

Working with tcsh shell commands 89

Setting up an alias for a particular version of a command
If you tend to use a command with the same options every time, you may want to set up an alias for the
command with those particular options. Let's take an example. The grep command searches through
files and prints out lines that contain a requested string. For example:

grep hello file

displays all the lines of file that contain the string hello. Normally, grep distinguishes between
uppercase and lowercase letters; this means, for example, that the search in the previous example does
not display lines that contained HELLO, Hello, and so forth. If you want grep to ignore the case of letters
as it searches, you must specify the –i option, as in:

grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the –i version of grep most of the time, you can define the alias:

alias grep "grep -i"

From this point on, if you use the command:

grep string file

it is automatically converted to:

grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an –i option that prompts you to
confirm the deletion. The file name and a question mark are displayed. For example, if you entered rm -i
file1 and file1 is in your working directory, you would see the prompt:

file1: ?

before the system actually removes the file. You then enter y (yes) or n (no) in response. If you like this
extra bit of safety, you might define:

alias rm "rm -i"

After this, when you call rm, it automatically checks with you before deleting a file, just to make sure that
you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is used in the alias, but
this is so common that the shell checks specially for an alias of the same name, and does the correct
thing.

If you find yourself using the same option every time you call a command, you might consider creating an
appropriate alias so that the shell automatically adds the option. Of course, the best place to define this
alias is in your .tcshrc file; then the alias is set up every time you invoke the shell.

Turning off an alias
If you have set up an alias like the one previously described for rm, you may find that you do not want the
alias to apply in some situations. For example, when you delete a huge number of files, you probably do
not want rm to ask if it is okay to delete each one. In this situation, you have several options:

• Get rid of the alias entirely. The command:

unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get the real rm command.

90 z/OS: UNIX System Services User's Guide

• Escape the alias. If you put a backslash in front of an alias, the shell uses the real command rather than
the alias. For example:

\rm file

• Specify the full pathname. For example:

/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias substitution when you
specify a command as a pathname.

These alternatives should help you get around options that you have automatically associated with a
command.

Combining commands
There are several simple ways you can combine several commands on a single command line:

• You can run a series of commands, one after the other:

Using a semicolon (;)
Using && and ||

• You can run more than one command concurrently:

Using a pipe (|) or a filter with a pipe

The output from the first command is piped to the next command as the first command is running.

Using a semicolon (;)
The shell lets you enter several commands on the same command line. To do this, just use the semicolon
character to separate the commands; for example:

cd mydir ; ls

Also, if you have defined the alias:

alias l "ls –l"

you can enter:

cd mydir ; l

because you can use aliases such as l after a semicolon.

Using && and ||
When stringing together more than two commands, you may want to control the running of the second
command based on the outcome of the first command. You can use:
&&

If the command that precedes && completes successfully, the command following && is run. Leave a
space on either side of the && operator: command && command.

||
If the command that precedes || fails, the command following || is run. Leave a space on either side
of the || operator: command || command.

Working with tcsh shell commands 91

Using a pipe
The output from one command can be piped in as input to the next command. Two or more commands
linked by a pipe (|) are called a pipeline. A pipeline is written as:

command | command | ...

You enter the commands on the same line and separate them by the "or-bar" character |.

Many commands are well suited to being used in a pipeline. For example, the grep command searches
for a particular string in input from a file or standard input (the keyboard). A command such as:

history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded commands in your history
file. The command:

ls –l | grep "Jan"

uses ls to obtain information about the contents of the working directory and uses grep to search
through this information and display only the lines that contain the string Jan. The pipeline displays the
files that were last changed in January.

A filter is a command that can read from standard input and write to standard output. A filter is often used
within a pipeline. In the following example, grep is the filter:

ps -e | grep cc | wc -l

lists all your processes that are currently active in the system and pipes the output to grep, which
searches for every instance of the string cc. The output from grep is then piped to wc, which counts every
line in which the string cc occurs and sends the number of lines to standard output.

Using substitution in commands
Another shell feature that is useful for programmers is command substitution. When encountering a
construct of the form:

 `command `

in an input command line, the shell runs the given command. It then puts the output of the command,
after converting newlines into spaces, back into the command line, replacing command, and runs the new
command line. This is called command substitution.

As an example of how a programmer could use command substitution, consider a file called srclist,
containing the following list of source code file names: alpha.c, beta.c, and gamma.c. If you enter the
command:

grep printf `cat srclist`

the shell runs cat against the contents of srclist, and rewrites the original command line, so that this line
appears as:

grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines that contain the string
printf. This type of construct quickly locates all references to a particular variable or function in the
source code for a program.

92 z/OS: UNIX System Services User's Guide

Using the find command in command substitution constructs
The find command is useful in command substitution constructs. find displays the names of files that
have specified characteristics. For example:

find dir1 –name "*.c"

finds all files in the directory dir1 whose names match the wildcard pattern *.c. In other words, it finds
all files in that directory with names having the .c suffix.

The command:

ls -l `find dir1 –name "*.c"`

finds all the .c files and then uses ls to display information about these files.

Complicating things further, you could enter

ls -l `find dir1 –name "*.c"` | grep -F "Nov"

This sets up a pipeline that displays ls information only for files that were last changed in November. (To
be perfectly accurate, it also displays information about files that have the string Nov in their names, too.)

Another useful find option has the form:

find path –ctime number

This says that you want to find files that have changed in the last number of days. For example:

ls -l `find dir –ctime 1`

displays ls information about all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the file names only if you specify the –
print option. Thus, you would have to enter:

find dir –name "*.c" –print

to get the results just described. The z/OS UNIX find command automatically prints its results without –
print. However, if you have an existing shell script or compatibility with UNIX systems is important to
you, you can use –print.

For more information about the find command, see the find command description in z/OS UNIX System
Services Command Reference.

Characters that have special meaning to the shell

Certain characters have special meaning to the shell; these are often called metacharacters. If you enter a
command that contains any of these characters, the shell often assumes that you are using the character
in its special sense.

Characters used with commands
Character

Usage
|

Pipes the output from one command to a second command; separates commands in a pipeline.
||

Separates two commands. If the command preceding || fails, it runs the following command
(Boolean OR operator).

Working with tcsh shell commands 93

>
Redirects stdout.

<
Redirects stdin.

&
Runs a command in the background, if placed at the end of a command line.

>&
Used for redirecting stdout and stderr.

&&
Separates two commands. If the command preceding && succeeds, it runs the following command
(Boolean AND operator).

;
Separates sequential commands; allows you to enter more than one command on the same line.

()
Around a sequence of commands, groups those commands that are to run as a separate process in a
subshell environment. The commands run in a separate execution environment: changes to variables,
the working directory, open files, and so on, will not remain in effect after the last command finishes.

(␠) is also used to group mathematical operations.

{ }
Around a sequence of commands, groups those commands that are run in the current shell
environment. Changes to variables will affect the current shell.

Both { and } are reserved words to the shell. To make it possible for the shell to recognize these
symbols, you must enter a blank or <newline> after the {, and a semicolon or <newline> before the }.

#
Following a command in a shell script, indicates the beginning of a comment.

$
At the beginning of a string, indicates that it is a variable name.

\
In general, the backslash character turns off the special meaning of the character that follows it. For
more information, see “Using a special character without its special meaning” on page 95.

' '
A pair of single quotation marks turns off the special meaning of all characters within the quotation
marks. For more information, see “Using a special character without its special meaning” on page
95.

" "
A pair of double quotation marks turns off the special meaning of the characters within the quotation
marks, except that !event, $var, and `cmd` will show history, variable, and command substitution.
See “Using a special character without its special meaning” on page 95 for more information.

Characters used in file names
Character

Usage
/

Separates the components of a file's pathname.
~

(Tilde) symbolizes your home directory when used by itself. When used together with a user ID, ~
symbolizes that user's home directory. For example:

 ~valerie/.tcshrc

refers to user VALERIE's .tcshrc file.

94 z/OS: UNIX System Services User's Guide

.
When used as a component of a pathname, indicates the working directory.

..
When used as a component of a pathname, indicates the parent directory.

?
Used as a wildcard character that can match any one character, except a leading dot (.).

*
Used as a wildcard character that can match a sequence of zero or more characters, except a leading
dot (.).

Redirecting input and output
Character Usage Example

< Redirects input to a specified file. “Redirecting input from a file” on page 88.

> Redirects output to a specified
file.

“Redirecting command output to a file” on page 87.

>> Redirects output to be appended
to the end of the specified file.

“Redirecting command output to a file” on page 87.

>& Redirects stdout and stderr. “Redirecting error output to a file” on page 88.

<<text Reads standard input until it
encounters text.

This is used in what is called a “here-document.”
Input is usually typed on the screen or in a shell
script. For example, this script creates a file called
hello.c, compiles it into hello, and then executes it:

create program
cat > hello.c << EOF
main() {
 puts("Hello, World!\n");
}
EOF
compile program
c89 -o hello hello.c
#execute program
hello

When you run the shell script, it runs the cat >
hello.c command using the input between the
two End_of_File strings.

Using a special character without its special meaning
If you do not want to use the special sense of the metacharacters, instruct the shell to ignore them by
escaping them or quoting them. To do this, you use:

\
' '
" "

The backslash
The backslash character (\) turns off the special meaning of the character that follows it. For example:

echo it\'s me

Working with tcsh shell commands 95

prints:

it's me

If you just try:

echo it's me

without the backslash, the shell prints a > prompt after you press <Enter>instead of the usual $. The >
prompt is a continuation prompt. An apostrophe ' without a backslash is taken to be the start of a string
and the shell assumes that the string keeps going until you type another apostrophe, even if that goes on
for several lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know its special meaning and
you want that meaning. Because a backslash itself is a special character, you must type two of them
whenever you want a single backslash.

A pair of single quotation marks (' ')
A pair of single quotation marks (' ') turns off the special meaning of all characters within the quotation
marks.

A pair of double quotation marks (" ")
A pair of double quotation marks turns off the special meaning of the characters within the quotation
marks, except that !event, $var, and `cmd` will show history, variable, and command substitution.

Using a wildcard character to specify file names
If you have used other operating systems, you are probably familiar with the concept of wildcard
characters. (In an MVS context, the wildcard character is referred to as a global character, or pattern-
matching character.) A wildcard character is a special character that may be used to save typing in file
names in shell commands. The tcsh shell recognizes several different wildcard characters:

*
?
[]

The * character
The asterisk (*) stands for any sequence of zero or more characters, except a leading dot. You can use the
asterisk in file names. For example:

ls aa*

lists all files in the working directory with names that begin with aa.

The command:

mv *.c dir1/dir2

moves every file with the .c suffix from your working directory to the directory dir1/dir2.

You can use the * wildcard character in directory names as well as in file names. For example:

cat */*.c

displays the contents of all files that have the .c suffix, in directories under your working directory.

96 z/OS: UNIX System Services User's Guide

The ? character
In a pathname, the question mark ? can stand for any single character, except a leading dot. For example:

file.?

refers to any and all files with names that consist of file. followed by any single character. This can mean
file.a, file.b, file.c, and so on ... whichever of the files currently exist.

You can combine * and ?.

ls *.?

displays the names of all files under the working directory that have one-character file name suffixes.

Again, you can use the ? in directory names as well as file names. For example:

ls ???/*

shows all files in every directory under your working directory that have a three-character name.

The square brackets
Square brackets containing one or more characters stand for any one of the contained characters. For
example:

[bch]at

matches bat, cat, or hat.

ls [abc]*

lists all files in the working directory the names of which start with a, b, or c, followed by any other
sequence of zero or more characters. In other words, it lists all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the first character in the
sequence, a hyphen (-), and the last character. For example:

[a–m]

This matches any character from a through m.

Suppose, for example, that you want to copy the contents of the working directory into two separate
directories. You might enter:

cp [a–m]* dira

to copy all files with names beginning with the letters a through m to the directory dira, and then issue
the second command:

cp [n–z]* dirb

to copy the rest of the files to the directory dirb. A command such as:

rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the construct matches any
character that is not inside the brackets. For example:

ls [!a–m]*

lists any file that does not begin with one of the letters in the range a through m.

Working with tcsh shell commands 97

In the same way:

rm [!0-9]*

removes any file with a name that does not start with a digit.

Retrieving previously entered commands

In the tcsh shell, you can retrieve previously issued commands using:

• The history command, combined with the ! command
• The two retrieve function keys that are part of the TSO/E OMVS command interface to the shell
• Command-line editing, when you are using an asynchronous terminal interface

Retrieving commands from the history file
The shell records each command that you enter in a file under your home directory. This file is called the
history file; its name is .history. If you enter the command:

history

the shell displays the current contents of your history file. Each command is numbered.

You can rerun any of the commands in your history file by typing !, followed by a space, followed by the
number of the command you want to use.

For example, suppose that you are a programmer and you enter a complicated command to compile part
of a program. The program contains a syntax error, so you call a text editor to edit the source code and
correct the problem. Now you want to run the same compile command on the corrected program. You
may save yourself a good deal of typing by using:

history

to find out the number of the previous compile command and then running the command with !. For
example, if the history file shows you that the command you want to run is number 44, you would type:

! 44

to run the previous compile command.

Another time-saver is to specify your shell prompt as:

set prompt="\!>

in your .tcshrc file. The shell prompt is then preceded by the number assigned to the command in the
command history file.

If you type ! followed by a space, followed by a string of characters (not beginning with a digit), the shell
checks backward through the history file and runs the most recent command that begins with the given
string. For instance, look at the compilation example. Suppose you are using the c++ command to compile
your program. Then:

! c++

looks back through the history and runs the most recent c++ command. You do not even have to check on
the number of the command you want to enter. The shell displays the selected command in the output
area of the screen and then runs it.

This backward-search feature of ! can search for aliases as well as normal commands. ! searches for the
beginning of the command line as you typed it, not the way that the line looked after the alias was
replaced.

98 z/OS: UNIX System Services User's Guide

If you enter !! without a number after it, the shell repeats the most recent command.

Editing commands from the history file
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c, and so on that you want
to compile with similar c89 commands. This situation is a little different from the one discussed in the
previous topic. You do not want to rerun the same command for each file; the command has the same
form each time, but you have to specify in a new file name each time.

You can still do this using the history file. The command:

^old_string^new_string

runs a previous command but replaces the first occurrence of the old string with the new string. For
example, suppose you compile file1.c with:

c89 options file1.c

Then the command:

^file1^file2

tells the shell to look at the previous command and change file1 to file2. The shell makes this change,
and then displays and runs the modified command.

^file2^file3

performs the same kind of operation, changing file2 in the previous command to file3 and then going
ahead with the compilation. This saves you the trouble of retyping all the options for the command.

Using the retrieve function keys
If you are using the OMVS interface, there are two function key settings for retrieving commands:
Retrieve

This key performs a "backward retrieve" function. It retrieves a saved command from a stack of saved
input lines, starting with the most recent and moving down to the oldest available line.

FwdRetr
This key is used with the Retrieve key to retrieve commands from the stack of saved input lines. If you
press the Retrieve key one too many times and go past the line you want, you can press the FwdRetr
key to display the line that was previously retrieved by the Retrieve key.

Press the Retrieve key repeatedly until the command you want to use is displayed on the command line.
Once the command is displayed, you can modify the command or use it as it is displayed. Press <Enter>
to run the command.

Command-line editing
When you use rlogin or telnet to login to the shell, you can use command-line editing. Command-line
editing lets you access commands from your history file, edit them, and run the result. You have already
seen this process before, when reading about some of the features of the ! command.

Command editing is useful at those times when you are running the same sequence of commands, or
slight variations on the same sequence of commands. The point of command editing is to save yourself
the trouble of typing the same thing over and over again—look especially for long commands that normally
require a lot of typing. Command editing is also useful when you have made a mistake in typing a
command line and wish to correct it.

Using the vi command editor

If you run the command:

bindkey -v

Working with tcsh shell commands 99

it tells the shell that you want the ability to edit commands the way that you normally edit text with vi;
you are set up for vi command editing. Whenever the shell prompts you for input, it is as if the shell puts
you into vi insert mode on a new line at the end of the history file. You can type in a new command just as
you normally would.

You can also press <Esc> to enter a vi-like command mode. When you enter command mode, you can
use the usual cursor movement commands to move around on the command line, or to move up and
down in the history file. For example:

• Press the k key to move back to the previous line in the history file (the last command line you entered).
Press the k key again, and you move to the line before that.

• Press j and you move forward in the history file.

In this way it is simple to retrieve recent commands from the history file. You can then edit them using
standard vi commands. For example, you can use $ to move to the end of the line, and A to begin
appending text to the end of the line. When you have edited the line to produce the command that you
want to run, simply press <Enter> to run that line.

As you might expect, you can use these search commands:

/string
?string

to search backwards and forwards through the history file. You can edit the command line with these vi
commands:
w

Move to next word
b

Move to previous word
d

delete
c

change
a

append
i

insert
u

undo
and many of the other vi commands. For a complete list of available commands, see the tcsh command
description in z/OS UNIX System Services Command Reference.

Using the emacs command editor

To set up for emacs command editing, enter:

bindkey -e

This lets you use commands identical to emacs commands to edit your shell command line. For more
information, see the tcsh command description in z/OS UNIX System Services Command Reference.

Using file name completion
Tip: File name completion requires the use of the TAB key. This key must be mapped correctly for the
feature to work. Most connections through telnet and rlogin will transmit the TAB information correctly. If
you are connected in any other manner, this feature may not work correctly.

100 z/OS: UNIX System Services User's Guide

The tcsh shell provides a time saving feature for completing file names. Rather than having to type out the
entire string to access a file or execute a program, you can type just the first letter or letters and let the
shell help you with the rest.

For example, if you have a file called phonebook, and you want to list the contents of this file on the
screen with the more command, you can do so by typing the command, the first letter or letters of the file,
and then pressing the TAB key. For example, if you type:

more ph

and then press the TAB key, the shell will provide you with:

more phonebook

you can then press ENTER and execute the command.

If you have more than one file name that matches the letter or letters you have typed, the shell will alert
you with a beep. For example, if you have three files, called list1, list2, and list3, and you type:

more li

and press TAB, the beep will sound, and the shell will complete the file name as far as it can:

more list

you must then type 1, 2, or 3 and press ENTER.

If you are unsure of how many files there are, or which one you want, you can type <CRTL-D> when the
shell beeps, and you will be provided with matching names. For example:

> more list
list1 list2 list3
> more list

Underneath the matching names the command prompt is displayed again. Now you can enter the number
that you wish and then press ENTER.

If there are no matches for the letter or letters you have typed, the shell will beep, but when you press
<CRTL-D>, nothing will be displayed.

You can also use file name completion to aid in changing between directories with long paths. If you keep
files in the directory stuff/data/graphics, it is easier to use file name completion to access the directory
than to type the entire path by hand. For example, if you are in your home directory, and stuff is a
subdirectory containing data/graphics, and you want to change into that directory, you can do the
following:

cd s [TAB]
cd stuff/.
cd stuff/d [TAB]
cd stuff/data
cd stuff/data/g [TAB]
cd stuff/data/graphics

then press ENTER, and the directory change command will execute.

You can find more information about file name completion in z/OS UNIX System Services Command
Reference.

Using record-keeping commands
Record-keeping commands can be very helpful for programmers. For example, suppose you have a
program that is split into several source files. For the sake of simplicity, assume that the source files all
have the extension .c and are all stored in a subdirectory called src. (To read about extensions, see
“Naming files” on page 199.)

Working with tcsh shell commands 101

It is often the case that you want to find out which source files in the subdirectory refer to a particular
variable or function. You can do this very simply with the command:

grep 'name' src/*.c

The command checks all the appropriate files in the subdirectory src and displays the lines that contain
the given name. Each line is labeled with the name of the file that contains the line. You can quickly find
the use of a function or data object in source files.

As another example of using record-keeping commands, suppose that you are working on a large program
and every few days you back up the source code for the program by copying it to a directory in a different
file system (as a precaution). You would like to compare the current versions of your source files with one
of the saved versions, to find out what changes have been made between the two. The command:

diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons possible.

The cksum command gives a checksum for each file. If applied to two versions of what was at one time
the same file, cksum gives a convenient way to tell if the files are still the same. It does not, however,
indicate what the differences are.

The find command also has applications to programming. For example, suppose you are looking for a
particular C source program but cannot remember where it is stored.

find / –name '*.c'

searches all the files and file systems, starting at the root, and displays the names of all files with the .c
extension.

Finding elements in a file and presenting them in a specific format
awk is a powerful command that can perform many different operations on files. The general purpose of
awk is to read the contents of one or more files, obtain selected pieces of information from the files, and
present the information in a specified format.

One simple way to use awk is with a command line with the form:

awk '/regexp/ {action}' file

This asks awk to obtain information from the specified file. awk obtains the information by performing the
specified action on every line in the file that contains a string matching the given regular expression,
regexp. (For further information, see Regular expressions (regexp) in z/OS UNIX System Services
Command Reference.) For example:

awk '/abc/ {print}' file

displays every record in the file that contains the string abc.

For more discussion on using awk, see Appendix B, “Using awk,” on page 281.

Timing programs
The time command lets you time programs to find out how much processor time they actually require.
You might use this to compare two versions of a program to see if one runs faster than the other. You can
run a program with:

time command-line

where command-line is a command line that invokes the program you want to time. time runs the
program and displays:

102 z/OS: UNIX System Services User's Guide

• The total time the program took to execute, labeled real
• The total time spent in the user program, labeled user
• The central processor time spent performing system services for the user, labeled sys

For more information, see the time command description in z/OS UNIX System Services Command
Reference.

Using the passwd command
You can change a user's password or password phrase with the passwd command:

passwd [-u userid]

The passwd command changes the login password or password phrase for the user ID specified. If userid
is omitted, the login name associated with the current terminal is used. You are prompted for the new
password or password phrase.

For example:

passwd

changes the password or password phrase for the invoker. The invoker is prompted for the old password
or password phrase and then for the new value.

Non-superusers can change the password or password phrase for another user if they know the user ID
and the current password or password phrase. This example changes the password or password phrase
for user ID bonnie:

passwd -u bonnie

For more information about the passwd command, see the password command description in z/OS UNIX
System Services Command Reference. For information on setting up RACF to enable password phrase
support, see z/OS Security Server RACF Security Administrator's Guide.

Switching to superuser or another ID
With the su command, you can switch to any user ID, including the superuser. A user can switch to
superuser authority (with an effective UID of 0), if the user is permitted to the BPX.SUPERUSER resource
in the FACILITY class within the Resource Access Control Facility (RACF). Either the ISPF shell or the su
shell command can be used for switching to superuser authority.

If you do not specify a user ID, the su command changes your authorization to that of the superuser. If
you specify a user ID, su changes your authorization to that of the specified user ID.

When you switch to superuser (UID 0) without specifying a user ID, you keep your MVS identity (TSO/E
ID). You keep your access authority to MVS data sets, while gaining authority to access any z/OS UNIX
files.

When you change user ID by specifying a user ID and password, you assume the MVS identity of the new
user ID, even if the user ID has UID 0.

If you use the –s option on the su command, you will not be prompted for a password. Use this option if
you have access to the BPX.SRV.userid SURROGAT class profile. The userid is the MVS user ID associated
with the target UID.

To return to your own user ID, type:

exit

This returns you to the shell in which you entered the su command.

Working with tcsh shell commands 103

For more information, see the su command description in z/OS UNIX System Services Command
Reference.

Using the whoami command
The whoami command displays a username associated with the effective user ID, unlike the who am i
command, which displays the login name.

For example, if you login as user1 and then use the su command to change to 'user2':

command returned
who am I user1
whoami user2

For more information about the whoami command, see the whoami command description in z/OS UNIX
System Services Command Reference.

Running a TSO/E command
To run a TSO/E command from the shell or in a shell script, simply preface the TSO/E command with
either the tso or tsocmd shell command.

Using the tso command
To run a TSO/E command from the shell or in a shell script, you may preface the TSO/E command with the
tso shell command; for example:

tso -t tso_command

There are two options you can use:

• Specify the -t option to run a command through the TSO/E service routine. The command output is
written to stdout. If you specify a relative pathname, the command looks for the file in your current
directory.

Restrictions: TSO/E has some restrictions on the type of commands that can be run using the TSO/E
service routine (mini-TSO environment). In summary, you cannot run the following commands in this
environment:

– Commands that run authorized
– FIB (foreground initiated background) commands
– Other commands that require the TSO/E task structure, i.e., interactive commands such as oedit,

where interactive means that the user can interact with the command processing while issuing
additional terminal input (subcommands, function keys). For example, once the oedit command is
entered, the user can enter additional subcommands to add more lines and then quit or exit the
command.

For a full description of the restrictions, see the information on IKJTSOEV in z/OS TSO/E Programming
Guide.

• Specify the -o option to run a TSO command as if it had been entered on the OMVS command line and
run using the TSO subcommand or function key. If you use a relative pathname, the command looks for
the file in the working directory of your TSO/E session, which is typically your home directory.

If no option is specified, the following rules are applied in this order:

1. If stdout is not a tty, the TSO service routine is used since it is possible that the command output is
redirected to a file or piped to another command. Otherwise,

2. If the controlling tty supports 3270 passthrough mode, OMVS is used. Otherwise,
3. The TSO service routine is used.

104 z/OS: UNIX System Services User's Guide

See “Understanding standard input, standard output, and standard error” on page 62 for more
information about stdin, stdout, and stderr.

The tso command supports several environment variables. For more information about the tso
command and the environment variables associated with it, see z/OS UNIX System Services Command
Reference.

Using the tsocmd command
You can also use the tsocmd shell command to run a TSO/E command from the shell or in a shell script.

Unlike the tso shell command, the tsocmd shell command can be used to issue authorized TSO
commands. For more information about the tsocmd shell command and the environment variables
associated with it, see z/OS UNIX System Services Command Reference.

Online help
Two help facilities are available with the shell:

• The man command, which displays help information about a shell command. The man page is displayed
in your shell session, and you can work in the shell while viewing the help information.

Using the man command
You can use the man command to get help information about a shell command. The man syntax is:

man command_name

• To scroll the information in a man page, press <Enter>.
• To end the display of a man page, type q and press <Enter>.

To search for a particular string in a system that has a list of one-line command descriptions, use the -k
option:

man -k string

For example, to produce a list of all the shell commands for editing, you could type:

man -k edit

You can use the man command to view descriptions of TSO/E commands. To do this, you must prefix all
commands with tso. For example, to view a description of the MOUNT command, you would enter:

man tsomount

You can also use the man command to view descriptions of dbx subcommands. To do this, you must prefix
all subcommands with dbx. For example, to view a description of the dbx alias subcommand, you
would enter:

man dbxalias

For complete information about the man command, see man - Display sections of the online reference
manual in z/OS UNIX System Services Command Reference.

Shell messages
Messages issued by the tcsh shell and utilities are prefixed with the letters FSUC. See z/OS UNIX System
Services Messages and Codes.

Working with tcsh shell commands 105

106 z/OS: UNIX System Services User's Guide

[Programming Interface Information] Chapter 8.
Writing z/OS shell scripts

Most people find themselves using some sequences of commands over and over again.

• A programmer might always use the same commands to compile source code, and link the resulting
object code.

• A bookkeeper can have to go through the same sequence of shell commands each week to update the
books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have been stored in a text file.
For example, the programmer could store all the appropriate compiling and linking commands in a file. A
file containing commands in this way is called a shell script. After such a file is completed and it is made
executable, the programmer can run all the commands in the file by entering the file name on the
command line.

Putting commands in a shell script has several advantages over typing the commands individually. Using a
shell script:

• Reduces the amount of typing you have to do. You have to type in the shell script only once. Then you
can run all the commands in the script by entering the name of the file as a single shell command. A
shell script can save you a lot of time and effort if you are working with many files, or if some command
lines have several options.

• Reduces the number of errors. If you are typing in ten commands, you have ten chances to make a
mistake. With a shell script, however, you can take your time, edit the file carefully and be sure that it is
correct before you try to run it.

• Makes it easy for other people to do what you do. For example, consider the bookkeeper example. When
the bookkeeper goes on vacation, someone else has to fill in. It is much easier for the substitute
bookkeeper to type a single command that does everything correctly than to try to type in the full
sequence of commands.

For all these reasons, you will probably find that the use of shell scripts makes your work easier and more
productive. This topic provides only a brief overview, but it should give you an idea of how to write and use
shell scripts.

[End Programming Interface Information]

Running a shell script
You can run a shell script by typing the name of the file that contains the script. For example, suppose you
have a script named totals.scp that has three shell commands in it. If you enter:

totals.scp

the shell runs the three commands.

Before you can run a shell script, you must have read and execute permission to the file. Use the chmod
and umask commands to set the permissions. See the discussion of permissions in Chapter 18, “Handling
security for your files,” on page 217.

For another example, suppose you want to compile a collection of files written in the C programming
language. You could use the c89, cc, or c++ command. The c89 command, for example, compiles any file
file.c, link-edits the object module, and produces an executable file. The shell script:

c89 -c file1.c file2.c # compile only
c89 -o outfile file1.o file2.o file3.c # outfile for executable

© Copyright IBM Corp. 1996, 2018 107

compiles and link-edits the files and produces an executable file, outfile. Notice that in a shell script you
precede a comment with a #.

If you store this script in an executable file named compile, it could be run with the single command
compile. A new process is created for the script to run in.

To run a shell script in your current environment, without creating a new process, use the . (dot)
command. You could run the compile shell script this way:

. compile

If you want to use a shell script that updates a variable in the current environment, run it with the .
command.

Tip: You can improve shell script performance by setting the _BPX_SPAWN_SCRIPT environment variable
to a value of YES. See “Improving the performance of shell scripts” on page 40 for more information.

Using the magic number
When a script file starts with #!, the kernel's spawn and exec services recognize the file name after the #!
as the program to be run. For example, the z/OS UNIX file /u/userid/util1 contains the following in the
start of the file:

#! /u/userid/othershell

The kernel recognizes the magic number (#!) and runs /u/userid/othershell.

Using TSO/E commands in shell scripts
A shell script can include TSO/E commands as well as shell commands, and it can process TSO/E
command output. You use the tso shell command to run the TSO/E command. For a discussion of the
tso command, see “Using the tso command” on page 81.

Using variables
You can think of shell scripts as programs made up of shell commands. To allow more versatile shell
scripts, the shell supports many of the features of normal programming languages.

In a conventional programming language, a variable is a name that has an associated value. When you
want to use the value, you can use the name instead.

Note: A shell script does not inherit any variables from your current shell session. To pass on a variable,
you must export it.

Creating a variable
The shell also lets you create variables. A shell variable name can consist of uppercase or lowercase
letters, plus digits and the underscore character _. The name can have any length, but the first character
cannot be a digit. Uppercase letters are distinguished from lowercase ones, so NAME, name, and Name
are all different names.

To create a shell variable, just enter:

name='string'

as a command to the shell. No spaces are allowed around the =. For example:

HOME='/usr/macneil'

sets up a variable with the name HOME and the value /usr/macneil.

108 z/OS: UNIX System Services User's Guide

After you set a variable, you refer to it by prefixing its name with a dollar sign ($). Any command can use
the value of a variable by referring to it this way. For example, if HOME is set to /usr/macneil:

cd $HOME

is equivalent to:

cd /usr/macneil

Similarly:

cp $HOME/* /newdir

is equivalent to:

cp /usr/macneil/* /newdir

To change the value of an existing variable, you use a command with the same form as the existing
variable. For example:

HOME='/usr/benjk'

changes the value of HOME from /usr/macneil to /usr/benjk.

If the value on the right-hand side of the = sign does not contain spaces, tab characters, or other special
characters, you can leave out the single quotation marks. For example, you can enter:

HOME=/usr/benjk

Calculating with variables
Suppose you run the following commands either in a shell script or by typing in one command after
another:

i=1
j=$i+1
echo $j

The output of echo is 1+1, because a normal variable assignment assigns a string to a variable. Thus j
gets the string 1+1.

To evaluate an arithmetic expression, you can enter:

let "variable=expression"

This command line assigns the value of an expression to the given variable. For example:

i=1
let "j=$i+1"
echo $j

Here j is assigned the value of the expression and the echo command displays the value 2.

You can also use let to change the value of a variable. If you enter:

i=1
let "i=$i+1"
echo $i

the let command changes the value of i. The new value of i is the old value plus 1.

A let command can have any of the standard arithmetic expressions:
-A

Negative A

Writing z/OS shell scripts 109

A*B
A times B

A/B
A divided by B

A%B
Remainder of A divided by B

A+B
A plus B

A-B
A minus B

The standard mathematical order of operations is used, as shown in the way that operations are grouped:

• All unary minus operations are carried out;
• Then any *, /, or % operations (from left to right in the order they appear);
• Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double quotation marks around
the expression. Thus:

let "i=5+2*3"

assigns 11 to i, because the multiplication is done first. You can use parentheses in the usual way to
change the order of operations. For example:

let "i=(5+2)*3"

assigns 21 to i.

Note: let does not work with numbers that have fractional parts. It works only with integers.

Exporting variables
Up to this point, we have talked about defining shell variables and then using them in later command
lines. You can also define a shell variable and then call a shell script that makes use of that variable. But
you have to do a certain amount of preparation first.

A shell script is run like a separate shell session. By default, it does not share any variables with your
current shell session. If you define a variable VAR in the current session, it is local to the current session;
any shell script that you call will not know about VAR.

To deal with this situation, you can export the command; enter:

export VAR

The export command says that you want the variable VAR passed on to all the commands and shell
scripts that you execute in this session. After you do this, VAR becomes global and the variable is known
to all the commands and shell scripts that you use.

As an example, suppose you enter the commands:

MYNAME="Robin Hood"
export MYNAME

Now all your commands can use the MYNAME variable to obtain the associated name. You may, for
example, have shell scripts that write form letters that contain your name, Robin Hood, obtained from
the MYNAME variable.

Note: You could use single or double quotation marks to enclose the variable value. See “Quoting variable
values” on page 36 for more information.

110 z/OS: UNIX System Services User's Guide

When a script begins running, it automatically inherits all the variables currently being exported. However,
if the script changes the value of one of those variables, that change is not reflected to the calling shell—
unless you run the script with the dot (.) utility.

By default, any variables created within a shell script are local to that script. This means that when
another program is run, those variables do not apply in its environment. However, the script can use the
export command to turn local variables into global ones. Inside a shell script:

export name

indicates that the variable with the given name should be exported. When other programs are run from
that script, they inherit the value of all exported variables. However, when the script ends, all its exported
variables are lost to the calling shell.

Some variables are automatically marked for export by the software that creates them. For example, if
you invoke the shell, the initialization procedure automatically marks the HOME variables for export so
that other commands and shell scripts can use it. In Chapter 4, “Customizing the z/OS shell,” on page 35,
you saw that in a typical .profile file for an individual user, the PATH variable is exported. Exporting PATH
ensures that search rules and changes to search rules are automatically shared by all shell sessions and
scripts.

You must export other variables explicitly, using the export command.

Associating attributes with variables
The typeset command lets you associate attributes with shell variables. This process is analogous to
declaring the type of a variable in a conventional programming language. For example:

typeset –i8 y

says that y is an octal integer. In this way, you can make sure that arithmetic with y is always performed in
base 8 rather than the usual base 10.

Other attributes may specify how the variable's value is displayed when the variable is expanded.
Attributes of this kind are:
–Ln

The value should always be displayed with n characters, left-justified within that space.
–Rn

The value should always be displayed with n characters, right-justified within that space.
–RZn

The value should always be displayed with n characters, right-justified and with enough leading zeros
to fill out the rest of the space.

–Zn
The same as -RZn.

–LZn
The value should always be displayed with n characters, left-justified and with leading zeros stripped
off.

All of these options may lead to truncation of a value that is longer than the specified length.

You can use the –u attribute of typeset for variables with string values. Then whenever such a variable is
assigned a new value, all lowercase letters in the value are automatically converted to uppercase.
Similarly, the –l attribute specifies that whenever a variable is assigned a new value, all uppercase letters
in the value are automatically converted to lowercase.

The read-only attribute –r is useful when a variable is marked for export. The command:

typeset –r name

Writing z/OS shell scripts 111

says that the variable name cannot be changed from its present value. Then subsequent commands
cannot change this value. You can also use the format:

typeset –r name=value

which sets the variable to the given value and marks it read-only so that the value cannot be changed.

Displaying currently defined variables
The command typeset without any arguments displays the currently defined variables and their
attributes. The variation:

typeset -x

displays all the variables currently defined for export.

Using positional parameters — the $N construct
The sample shell script discussed previously in this topic compiled and link-edited a program stored in a
collection of source modules. This information discusses a shell script that can compile and link-edit a C
program stored in any file.

To create such a script, you need to be familiar with the idea of positional parameters. When the shell
encounters a $N construct formed by a $ followed by a single digit, it replaces the construct with a value
taken from the command line that started the shell script.

• $1 refers to the first string after the name of the script file on the command line
• $2 refers to the second string, and so on.

As a simple example, consider a shell script named echoit consisting only of the command:

echo $1

Suppose we run the command:

echoit hello

The shell reads the shell script from echoit and tries to run the command it contains. When the shell sees
the $1 construct in the echo command, it goes back to the command line and obtains the first string
following the name of the shell script on the command line. The shell replaces the $1 with this string, so
the echo command becomes:

echo hello

The shell then runs this command.

A construct like $1 is called a positional parameter. Parameters in a shell script are replaced with strings
from the command line when the script is run. The strings on the command line are called positional
parameter values or command-line arguments.

If you enter:

echoit Hello there

the string Hello is considered parameter value $1 and the string there is $2. Of course, the shell script
is only:

echo $1

so the echo command displays only the Hello.

112 z/OS: UNIX System Services User's Guide

Positional parameters that include a blank can be enclosed in quotation marks (single or double). For
example:

echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as one parameter.

Returning to a compile and link example, a programmer could write a more general shell script as:

c89 -c $1.c
c89 -o $1 $1.o

If this shell script were named clink, the command:

clink prog

would compile and link prog.c, producing an executable file named prog in the working directory. In the
same way, the command:

clink dir/prog2

would compile and link dir/prog2.c. The shell script compiles and links a C program stored in a single file.

As another example of a shell script containing a positional parameter, suppose that the file lookup
contains:

grep $1 address

(where address is a file containing names, addresses, and other useful information). The command:

lookup Smith

displays address information about anyone in the file named Smith.

Using quotation marks to enclose a construct in a shell script
A $N construct in a shell script can be enclosed in double or single quotation marks.

• When double quotation marks are used, the parameter is replaced by the appropriate value from the
command line. For example, suppose that the file search contains:

grep "$1" *

If you enter the command:

search 'two words'

the parameter value 'two words' replaces the construct $1 in the grep command:

grep "two words" *

If the grep command does not contain the double quotation marks, the parameter replacement would
result in:

grep two words *

which has an entirely different meaning.
• When you use single quotation marks to enclose a $N construct in a shell script, the $N is not replaced

by the corresponding parameter value. For example, if the file search contains:

grep '$1' *

grep searches for the string $1. The $1 is not replaced by a value from the command line. In general,
single quotation marks are “stronger” than double quotation marks.

Writing z/OS shell scripts 113

Using parameter and variable expansion
A $ followed by a number stands for a positional parameter passed to the script or function. A positional
parameter is represented with either a single digit (except 0) or two or more digits in braces; for example,
7 and {15} are both valid representations of positional parameters. For example, if the command:

echo $1

appeared in a shell script, it would echo the first positional parameter.

Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for the value of the
variable.

These constructs are called parameter expansions. In this sense, the term parameter can mean either a
positional parameter or a shell variable.

The z/OS shell also supports more complicated forms of parameter expansions, letting you obtain only
part of a parameter value or a modified form of the value.

Parameter expansion Usage

${parameter:-value} You can use ${parameter:-value} in any input to the shell. If
parameter currently has a value and the value is not null (for
example, a string without characters), the foregoing construct stands
for the parameter's value. If the value of the parameter is null, the
construct is replaced with the value shown in the brace brackets. For
example, a shell script might contain:

SHELL=${SHELL:-/bin/sh}

If the SHELL variable currently has a value, this simply assigns
SHELL its own current value. However, if the value of SHELL is null,
the given assignment will have the value of /bin/sh. The value
after :– can be thought of as a backup value in case the parameter
itself does not have a value. As another example, consider:

cp $1 ${2:-$HOME}

(This might occur in a shell script.) If both positional parameters are
present and have a nonnull value, the copy command is just:

cp $1 $2

However, if you call the shell script without specifying a second
positional parameter, it uses the backup value of $HOME. The result
is equivalent to:

cp $1 $HOME

${parameter:=value} The expansion form ${parameter:=value} is similar to the
previous form; the difference is that if the given parameter does not
currently have a value, the given value is assigned to parameter, and
then the new value of parameter is used. Thus the := form actually
assigns a value if the parameter does not already have one. In this
case, parameter must be a variable; it cannot be a positional
parameter.

114 z/OS: UNIX System Services User's Guide

Parameter expansion Usage

${parameter:?message} The expansion ${parameter:?message} is related to the previous
two forms. If the value of the given parameter is null, the given
message is displayed. If the construct is being used inside a shell
script, the script ends with an error status. For example, you might
have:

cp $1 ${2:?"Must specify a directory name"}

In this case, the message following the ? is displayed if there is no
second positional parameter. If you omit the message, the shell
prints a standard message. For example, you could just enter:

cp $1 ${2:?}

to get the standard error message.

${parameter:+replacement} The construct ${parameter:+replacement} might be thought of
as the opposite of the preceding expansions. If parameter has not
been assigned a value, or has a null value, this construct is just the
null string. If parameter does have a value, the value is ignored and
the replacement value is used in its place. Thus, if a shell script
contains:

echo ${1:+"There was a parameter"}

the echo command displays:

There was a parameter

if the script was invoked with a parameter. If no parameter was
specified, the echo command has nothing to echo.

${parameter#pattern} The construct ${parameter#pattern} is evaluated by expanding
the value of parameter and then deleting the smallest leftmost part of
the expansion that matches the given pattern of pathname wildcard
characters. For example, suppose that the variable NAME stands for
a file name. You might use:

${NAME#*/}

to remove the highest-level directory from the pathname. If:

NAME="user/dir/subdir/file.c"

then:

${NAME#*/}

expands to:

dir/subdir/file.c

Writing z/OS shell scripts 115

Parameter expansion Usage

${parameter##pattern} The construct ${parameter##pattern} removes the largest
leftmost part that matches the pattern. For example, if:

NAME="user/dir/subdir/file.c"

then:

${NAME##*/}

yields:

file.c

The wildcard character * stands for any sequence of characters. In
this situation, it stands for everything up to the final slash.

${parameter%pattern} The construct ${parameter%pattern} removes the smallest
rightmost part of the parameter expansion that matches pattern.
Thus if:

NAME="user/dir/subdir/file.c"

then:

${NAME%.?}

stands for:

user/dir/subdir/file

${parameter%%pattern} Similarly, ${parameter%%pattern} stands for the expansion of
parameter without the longest rightmost string that matches pattern.
Using the previous example of NAME,

${NAME%%/*}

stands for:

user

Using special parameters in commands and shell scripts
The z/OS shell has a variety of special parameters that may be used in command lines and shell scripts.

116 z/OS: UNIX System Services User's Guide

Parameter Expands to

$@ The complete list of positional parameters, each separated by a single space. If $@
is quoted, the separate arguments are each quoted; for example:

echo "$@"

is equivalent to:

"$1" "$2" "$3"

If the positional parameters are all file names:

cp $@ dir

copies all the files to the given directory dir.

$* The complete list of positional parameters. If $* is quoted, the result is
concatenated into a single argument, with parameters separated by the first
character of the value of the shell variable IFS. For example, if the first character of
IFS is a comma, then:

echo "$*"

displays the parameters with separating commas:

"$1,$2,$3"

$# The number of positional parameters passed to this shell script. This number can
be changed by several shell commands (for example, set or shift); see z/OS
UNIX System Services Command Reference.

$? The exit status value returned by the most recently run command. The command
echo $? prints out the status from the most recently run operation or command.

$– The set of options that have been specified for this shell session. This includes
options that were specified on the command line that started the shell, plus other
options that have been set with the set command.

Using control structures
The shell provides facilities similar to those found in programming languages. It offers these control
structures, which are related to programming control structures:

• The if conditional
• The while loop
• The for loop

Using the test command to test conditions
Before discussing the various control structures, it is useful to talk about ways to test for various
conditions. The test command tests to see if something is true.

Examining the nature of a file
Table 4 on page 118 lists the test commands that you can use to determine the nature of a file.

Writing z/OS shell scripts 117

Table 4: Using the test command to examine the nature of a file.

Syntax of the test command Questions asked

test -d pathname Is pathname a directory?

test -f pathname Is pathname a file?

test -r pathname Is pathname readable?

test -w pathname Is pathname writable?

Comparing the age of two files
Table 5 on page 118 lists the test commands that you can use to compare the age of two files.

Table 5: Using the test command to compare the age of two files.

Syntax of the test command Questions asked

test file1 -ot file2 Is file1 older than file2?

test file1 -nt file2 Is file1 newer than file2?

Comparing the values of two numbers
Table 6 on page 118 lists the test commands that you can use to compare the values of two numbers.

Table 6: Using the test command to compare the values of two numbers.

Syntax of the test command Questions asked

test A -eq B Is A equal to B?

test A -ne B Is A not equal to B?

test A -gt B Is A greater than B?

test A -lt B Is A less than B?

test A -ge B Is A greater than or equal to B?

test A -le B Is A less than or equal to B?

Comparing two strings
Table 7 on page 118 lists the test commands that you can use to compare two strings.

Table 7: Using the test command to compare two strings.

Syntax of the test command Questions asked

test str1 = str2 Is str1 equal to str2?

test str1 != str2 Is str1 not equal to str2?

Testing whether strings are empty

Table 8 on page 118 lists the test commands that you can use to determine whether strings are empty.

Table 8: Using the test command to test whether strings are empty.

Syntax of the test command Questions asked

test -z string Is string empty?

test -n string Is string not empty?

118 z/OS: UNIX System Services User's Guide

Any of these tests will also work if you put square brackets ([]) around the condition instead of using the
test command. For example, test 1 -eq 1 is the equivalent of [1 -eq 1].

The double square bracket [[test_expr]] syntax is also supported. The double square bracket ([[]])
also supports additional tests over the test command, and there are some subtle differences between the
tests (for example, string equal vs. pattern matching).

The result of test is either true or false. test returns a status of 0 if the test turns out to be true and a
status of 1 if the test turns out to be false.

You can use –n to check if a variable has been defined. For example:

test -n "$HOME"

is true if HOME exists, and false if you have not created a HOME variable.

You can use ! to indicate logical negation;

test ! expression

returns false if expression is true, and returns true if expression is false. For example:

test ! -d pathname

is true if pathname is not a directory, and false otherwise.

The if conditional
An if conditional runs a sequence of commands if a particular condition is met. It has the form:

if condition
then commands
fi

The end of the commands is indicated by fi (which is "if" backward). For example, you could have:

if test -d $1
then ls $1
fi

This tests to see if the string associated with the first positional parameter, $1, is the name of a directory.
If so, it runs an ls command to display the contents of the directory.

Any number of commands may come between the then and the fi that ends the control structure. For
example, you might have written:

if
 test -d $1
then
 echo "$1 is a directory"
 ls $1
fi

This example also shows that the commands do not have to begin on the same line as then, and the
condition being tested does not have to begin on the same line as if. The condition and the commands
are indented to make them stand out more clearly. This is a good way to make your shell scripts easier to
read.

Another form of the if conditional is:

if condition
then commands
else commands
fi

Writing z/OS shell scripts 119

If the condition is true, the commands after the then are run; otherwise, the commands after the else
are run. For example, suppose you know that the string associated with the variable pathname is the
name of either a directory or a file. Then you could write:

if
 test -d $pathname
then
 echo "$pathname is a directory"
 ls $pathname
else
 echo "$pathname is a file"
 cat $pathname
fi

If the value of pathname is the name of a file, this shell script uses echo to display an appropriate
message, and then uses cat to display the contents of the file.

The final form of the if control structure is:

if condition1
then commands1
elif condition2
then commands2
elif condition3
then commands3
 ...
else commands
fi

elif is short for "else if" In this example, if condition1 is true, commands1 are run; otherwise, the shell
goes on to check condition2. If that is true, commands2 are run; otherwise, the shell goes on to check
condition3 and so on. If none of the test conditions are true, the commands after the else are run. Here is
an example of how this can be used:

if test ! "$1"
then
 echo "no positional parameters"
elif test -d $1
then
 echo "$1 is a directory"
 ls $1
elif test -f $1
then
 echo "$1 is a file"
 cat $1
else
 echo "$1 is just a string"
fi

The test after the if determines if the value of the first positional parameter, $1, is an empty string. If so,
there are no positional parameters, and the shell script uses echo to display an appropriate message;
otherwise, the script checks to see if the parameter is a directory name; if so, the contents of the directory
are listed with ls (after an appropriate message). If that does not work, the script checks to see if the
parameter is a file name; if so, the contents of the file are listed with cat (after an appropriate message).
Finally, if none of the previous tests work, the parameter is assumed to be an arbitrary string, and the
script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:

listit name

to list the contents of name in a useful form.

120 z/OS: UNIX System Services User's Guide

The while loop
The while loop repeats one or more commands while a particular condition is true. The loop has the
form:

while condition
do commands
done

The shell first tests to see if condition is true. If it is, the shell runs the commands. The shell then goes
back to check the condition. If it is still true, the shell runs the commands again, and so on, until the
condition is found to be false.

As an example of how this can be used, suppose you want to run a program named prog 100 times to get
an idea of the program's average running speed. The following shell script does the job:

i=100
date
while test $i -gt 0
do
 prog
 let i=$i-1
done
date

The script begins by setting a variable i to 100. It then uses the date command to get the current date
and time.

Next the script runs a while loop. The test condition says that the loop should keep on going as long as
the value of i is greater than zero. The commands of the loop run prog and then subtract 1 from the i
variable. In this way, i goes down by 1 each time through the loop, until it is no longer greater than 0. At
this point, the loop stops and the final instruction of the script prints out the date and time at the end of
the loop. The difference between the starting time and the ending time should give some idea of how long
it took to run the program 100 times.

(Of course, the shell itself takes some time to perform the test and to do the calculations with i. If prog
takes a long time to run, the time spent by the shell is relatively unimportant; if prog is a quick program,
the extra time that the shell takes may be large enough to make the timing incorrect.)

You can rewrite this shell script to make it a little more efficient:

i=100
date
while let "(i=$i-1) >= 0"
do
 prog
done
date

In this example, the let command is the condition of the while loop. It gives i a new value and then
compares this value to zero. The advantage of this way of writing the program is that it does not have to
call test to make the comparison; this speeds up the loop and makes the time more accurate.

The for loop
The final control structure to be examined is the for loop. It has the form:

for name in list
do commands
done

The parameter name should be a variable name; if this variable doesn't exist, it is created. The parameter
list is a list of strings separated by spaces. The shell begins by assigning the first string in list to the
variable name. It then runs the commands once. Then the shell assigns the next string in list to name, and
repeats the commands. The shell runs the commands once for each string in list.

Writing z/OS shell scripts 121

As a simple example of a shell script that uses for, consider:

for file in *.c
do
 c89 $file
done

When the shell looks at the for line, it expands the expression *.c to produce a list containing the names
of all files (in the working directory) that have the suffix .c. The variable file is assigned each of the names
in this list, in turn. The result of the for loop is to use the c89 command to compile all .c files in the
working directory. You could also write:

for file in *.c
do
 echo $file
 c89 $file
done

so that the shell script displayed each file name before compiling it. This would let you keep track of what
the script was doing.

As you can see, the for loop is a powerful control structure. The list can also be created with command
substitution, as in:

for file in $(find . -name "*.c" -print)
do
 echo $file
 c89 $file
done

Here the find command finds all .c files in the working directory, and then compiles these files. This is
similar to the previous shell script, but it also looks at subdirectories of the working directory.

Combining control structures
You can combine control structures by nesting (that is, putting one inside another). For example:

for file in $(find . -name "*.c" -print)
do
 if test $file -ot $1
 then
 echo $file
 c89 -c $file
 fi
done

This shell script takes one positional parameter, giving the name of a file. The script looks in the working
directory and finds the names of all .c files. The if control structure inside the for loop tests each file to
see if it is older than the file named on the command line. If the .c file is older, echo displays the name,
and the file is compiled. You can think of this as making a set of files up to date with the file name
specified on the command line.

For more information about the test command, see z/OS UNIX System Services Command Reference. The
section that discusses reserved words in z/OS UNIX System Services Command Reference contains
information about the [[...]] form.

Using functions
A shell function is similar to a function in C: It is a sequence of commands that do a single job. Typically, a
function is used for an operation that you tend to do frequently in a shell script. Before you can call a
function in a shell script, you must define it in the script. After the function is defined, you can call it as
many times as you want in the script.

122 z/OS: UNIX System Services User's Guide

As an example, consider the following piece of a shell script, showing the function definition and how the
function is called in the shell script:

function td
{
 if test -d "$1" # test if first argument is directory
 then
 curdir=$(pwd) # set curdir to working directory
 cd $1 # change to specified directory
 $2 # run specified command
 cd $curdir # change back to working directory
 return 0 # return 0 if successful
 else
 echo $1 "is not a directory"
 return 1 # return 1 if not successful
 fi
}
td /u/turbo/src.c ls # invoking the function

The purpose of td is to go to a specified directory, run a single command, and then return to the directory
from which the function was called.

To run a function, specify the function's name followed by whatever arguments it expects. To run the
function td, specify the function name followed by a directory name and a command name, as shown in
the last line of the foregoing example.

As you see in the td example, a function can also return a value. If the statement:

return expression

appears inside a function, the function ends and the value of expression is returned as the status, or
result, of the function. In general, the returned value:

• 0 means that the function has succeeded in its task.
• 1 means that the function has failed.

Anytime you need to repeatedly perform the same sequence of commands in a shell script, consider
defining a function to do the sequence of commands. This lets you organize a large script into smaller
blocks of subroutines.

In order to make a shell function available as a shell command, the function definition must be processed
by the shell that will execute the command. Typically, the user sets up a shell script (such as
$HOME/.setup) that contains all of the function definitions, and sets the ENV variable to the pathname of
that shell script. As the number of functions in this script grows, the time to process the function
definitions causes shell initialization time to increase.

Autoloading functions
Autoloading improves the performance of shell initialization by delaying function definition processing
until the first use. Functions that are not used by a particular user are never read by the shell, thus
avoiding the processing of unused functions. The FPATH variable allows flexibility in accessing directories
with system-wide, group, or personal function definitions.

FPATH is defined with the same format as the PATH variable. FPATH is a list of directories separated by
colons. These directories contain only function definitions and should not contain the current working
directory.

To use autoloading, place frequently used and shared functions in a directory pointed to by the FPATH
variable and specify the function name on an autoload or typeset –f command in the user's ENV
setup script.

The autoload command identifies functions that are not yet defined. The first time that an autoload
function is called within the shell, the shell searches FPATH directories for a file with the same name as
the function definition. If a matching file with the same name as the function is found, it is processed and
stored in the shell's memory for subsequent execution. The matching file contains the function definition
for the autoload function. Other function definitions may be found in this matching file, and if so, they

Writing z/OS shell scripts 123

will be defined to the shell when the file is processed. For information about how to set up the FPATH
search path, see “Customizing the FPATH search path: The FPATH variable” on page 40.

124 z/OS: UNIX System Services User's Guide

[Programming Interface Information] Chapter 9.
Writing tcsh shell scripts

Most people find themselves using some sequences of commands over and over again.

• A programmer may always use the same commands to compile source code, and link the resulting
object code.

• A bookkeeper may have to go through the same sequence of shell commands each week to update the
books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have been stored in a text file.
For example, the programmer could store all the appropriate compiling and linking commands in a file. A
file containing commands in this way is called a shell script. After such a file is completed and it is made
“executable,” the programmer can run all the commands in the file by entering the file name on the
command line.

Putting commands in a shell script has several advantages over typing the commands individually. Using a
shell script:

• Reduces the amount of typing you have to do. You have to type in the shell script only once. Then you
can run all the commands in the script by entering the name of the file as a single shell command. A
shell script can save you a lot of time and effort if you are working with many files, or if some command
lines have several options.

• Reduces the number of errors. If you are typing in ten commands, you have ten chances to make a
mistake. With a shell script, however, you can take your time, edit the file carefully, and get it right
before you try to run it.

• Makes it easy for other people to do what you do. For example, consider the bookkeeper example. When
the bookkeeper goes on vacation, someone else has to fill in. It is much easier for the substitute
bookkeeper to type a single command that does everything correctly than to try to type in the full
sequence of commands.

For all these reasons, you will probably find that the use of shell scripts makes your work easier and more
productive. This topic provides only a brief overview, but it should give you an idea of how to write and use
shell scripts.

[End Programming Interface Information]

Running a shell script
You can run a shell script by typing the name of the file that contains the script. For example, suppose you
have a script named totals.scp that has three shell commands in it. If you enter:

totals.scp

the shell runs the three commands.

Before you can run a shell script, you must have read and execute permission to the file. Use the chmod
and umask commands to set the permissions. See the discussion of permissions in Chapter 18, “Handling
security for your files,” on page 217. See the descriptions of chmod and umask in z/OS UNIX System
Services Command Reference.

© Copyright IBM Corp. 1996, 2018 125

For another example, suppose you want to compile a collection of files written in the C programming
language. You could use the c89, cc, or c++ command. The c89 command, for example, compiles any file
file.c, link-edits the object module, and produces an executable file. The shell script:

c89 -c file1.c file2.c # compile only
c89 -o outfile file1.o file2.o file3.c # outfile for executable

compiles and link-edits the files and produces an executable file, outfile. Notice that in a shell script you
precede a comment with a #.

If you store this script in an executable file named compile, it could be run with the single command
compile. A new process is created for the script to run in.

To run a shell script in your current environment, without creating a new process, use the source
command. You could run the calculate shell script this way:

source calculate

Should you want to use a shell script that updates a variable in the current environment, run it with the
source command.

Tip: To improve shell script performance, set the _BPX_SPAWN_SCRIPT environment variable to NO when
using the tcsh shell. This variable is intended only for use with the z/OS shell. If this variable is inherited
from a z/OS shell session, put

#!/bin/tcsh

as the first line in your tcsh shell scripts to avoid any errors. If tcsh is your login shell, you should unset
_BPX_SPAWN_SCRIPT, because it is only used for increasing performance of z/OS shell scripts.

Using the magic number
All tcsh scripts must have # as the first character of the script. When a script file starts with #!, the
kernel's spawn and exec services recognize the file name after the #! as the program to be run. It is
recommended that the first line of all tcsh scripts look like:

#!/bin/tcsh

with /bin/tcsh being the location of tcsh on the z/OS system. The kernel recognizes the magic value (#!)
and runs /bin/tcsh.

Using TSO/E commands in shell scripts
A shell script can include TSO/E commands as well as shell commands, and it can process TSO/E
command output. You use the tso shell command to run the TSO/E command. For a discussion of the
tso command, see “Using the tso command” on page 81.

Using variables
You can think of shell scripts as programs that are made up of shell commands. To allow more versatile
shell scripts, the shell supports many of the features of normal programming languages.

In a conventional programming language, a variable is a name that has an associated value. When you
want to use the value, you can use the name instead.

Creating a shell variable
The shell also lets you create variables. A shell variable name can consist of uppercase or lowercase
letters, plus digits and the underscore character _. The name can have any length, but the first character

126 z/OS: UNIX System Services User's Guide

cannot be a digit. Uppercase letters are distinguished from lowercase ones, so NAME, name, and Name
are all different names.

To create a shell variable, just enter:

set name='string'

as a command to the shell. For example:

set home='/usr/adams'

sets up a variable with the name home and the value /usr/adams.

After you set a variable, you refer to it by prefixing its name with a dollar sign ($). Any command can use
the value of a variable by referring to it this way. For example, if home is set to /usr/adams:

cd $home

is equivalent to:

cd /usr/adams

Similarly:

cp $home/* /newdir

is equivalent to:

cp /usr/adams/* /newdir

To change the value of an existing variable, you use a command with the same form as the existing
variable. For example:

set home='/usr/benjk'

changes the value of home from /usr/adams to /usr/benjk.

If the value on the right-hand side of the = sign does not contain spaces, tab characters, or other special
characters, you can leave out the single quotation marks. For example, you can enter:

home=/usr/benjk

Calculating with variables
Suppose you run the following commands either in a shell script or by typing in one command after
another:

set i=1
set j=$i+1
echo $j

The output of echo is 1+1, because a normal variable assignment assigns a string to a variable. Thus j
gets the string 1+1.

To evaluate an arithmetic expression, you can enter:

@ variable=expression

This command line assigns the value of an expression to the given variable. For example:

i=1
@ j=$i + 1
echo $j

Here j is assigned the value of the expression and the echo command displays the value 2.

Writing tcsh shell scripts 127

You can also use @ to change the value of a variable. If you enter:

i=1
@ i=$i + 1
echo $i

the @ command changes the value of i. The new value of i is the old value plus 1.

An @ command can have any of the standard arithmetic expressions:
-A

Negative A
A * B

A times B
A / B

A divided by B
A % B

Remainder of A divided by B
A + B

A plus B
A - B

A minus B
The standard mathematical order of operations is used, as shown in the way that operations are grouped:

• All unary minus operations are carried out;
• Then any *, /, or % operations (from left to right in the order they appear);
• Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double quotation marks around
the expression. Thus:

@ i = 5 + 2 * 3

assigns 11 to i, because the multiplication is done first. You can use parentheses in the usual way to
change the order of operations. For example:

@ i = ((5 + 2) * 3)

assigns 21 to i.

Note: @ does not work with numbers that have fractional parts. It works only with integers.

Setting environment variables
Up to this point, we have talked about defining shell variables and then using them in later command
lines. You can also define a shell variable and then call a shell script that makes use of that variable. But
you have to do a certain amount of preparation first.

A shell script is run as a child process to the parent shell. By default, the child process does not share any
variables with the parent. If you define a variable var in the parent shell, it is local to the current session;
any shell script, or child process, that you call will not inherit var.

To deal with this situation, you can enter the following:

setenv var [value]

The setenv command says that you want the variable var passed on to all the child processes that you
execute in this session. After you do this, var becomes inherited and the variable is known to all the
commands and shell scripts that you use.

128 z/OS: UNIX System Services User's Guide

As an example, suppose you enter the commands:

setenv myname "Friar Tuck"

Now all your child processes can use the myname variable to obtain the associated name. You may, for
example, have shell scripts that write form letters that contain your name, Friar Tuck, obtained from
the myname variable.

Note: You could use single or double quotation marks to enclose the variable value. See “Quoting variable
values” on page 50 for more information.

When a script or child process begins running, it automatically inherits all the environment variables
passed on to it. However, if the script changes the value of one of those variables, that change is not
passed back to the parent process —unless you run the script with the source utility.

By default, any variables created within a shell script are local to that script. This means that when
another program is run, those variables do not apply in its environment. However, the script can use the
setenv command to turn shell variables into global environment ones. Inside a shell script:

setenv name [value]

indicates that the variable with the given name should be defined as an environment variable. When other
programs are run from that script, they inherit the value of all environment variables. However, when the
script ends, all its environment variables are lost to the calling shell.

Some variables are automatically inherited by the software that creates them. For example, if you invoke
the shell, the initialization procedure automatically marks the HOME variables for environment variables
so that other commands and shell scripts can use it. In Chapter 5, “Customizing the tcsh shell,” on page
49, you saw that in a typical .tcshrc file for an individual user, the PATH variable is an environmental
variable. Making the PATH variable an environmental variable ensures that search rules and changes to
search rules are automatically shared by all shell sessions and scripts.

Using positional parameters — the $N construct
The sample shell script discussed previously compiled and link-edited a program stored in a collection of
source modules. This topic discusses a shell script that can compile and link-edit a C program stored in
any file.

To create such a script, you need to be familiar with the idea of positional parameters. When the shell
encounters a $N construct formed by a $ followed by a single digit, it replaces the construct with a value
taken from the command line that started the shell script.

• $1 refers to the first string after the name of the script file on the command line
• $2 refers to the second string, and so on.

As a simple example, consider a shell script named echoit consisting only of these commands:

#!/bin/tcsh #
echo $1

Suppose we run the command:

echoit hello

The shell reads the shell script from echoit and tries to run the command it contains. When the shell sees
the $1 construct in the echo command, it goes back to the command line and obtains the first string
following the name of the shell script on the command line. The shell replaces the $1 with this string, so
the echo command becomes:

echo hello

The shell then runs this command.

Writing tcsh shell scripts 129

A construct like $1 is called a positional parameter. Parameters in a shell script are replaced with strings
from the command line when the script is run. The strings on the command line are called positional
parameter values or command-line arguments.

If you enter:

echoit Hello there

the string Hello is considered parameter value $1 and the string there is $2. Of course, the shell script
is only:

echo $1

so the echo command displays only the Hello.

Positional parameters that include a blank can be enclosed in quotes (single or double). For example:

echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as one parameter.

Returning to a compile and link example, a programmer could write a more general shell script as:

c89 -c $1.c
c89 -o $1 $1.o

If this shell script were named clink, the command:

clink prog

would compile and link prog.c, producing an executable file named prog in the working directory. In the
same way, the command:

clink dir/prog2

would compile and link dir/prog2.c. The shell script compiles and links a C program stored in a single file.

As another example of a shell script containing a positional parameter, suppose that the file lookup
contains:

grep $1 address

where address is a file containing names, addresses, and other useful information. The command:

lookup Smith

displays address information on anyone in the file named Smith.

Using quotes to enclose a construct in a shell script
A $N construct in a shell script can be enclosed in double or single quotation marks.

• When double quotation marks are used, the parameter is replaced by the appropriate value from the
command line. For example, suppose the file search contains:

grep "$1" *

If you enter the command:

search 'two words'

the parameter value 'two words' replaces the construct $1 in the grep command:

grep "two words" *

130 z/OS: UNIX System Services User's Guide

If the grep command does not contain the double quotation marks, the parameter replacement results
in:

grep two words *

which has an entirely different meaning.
• When you use single quotation marks to enclose a $N construct in a shell script, the $N is not replaced

by the corresponding parameter value. For example, if the file search contains:

grep '$1' *

grep searches for the string $1. The $1 is not replaced by a value from the command line. In general,
single quotation marks are “stronger” than double quotation marks. Less is more!

Using parameter and variable expansion
A $ followed by a number stands for a positional parameter passed to the script or function. A positional
parameter is represented with either a single digit (except 0) or two or more digits in braces; for example,
7 and {15} are both valid representations of positional parameters. For example, if the command:

echo $1

appeared in a shell script, it would echo the first positional parameter.

Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for the value of the
variable.

These constructs are called parameter expansions. In this sense, the term parameter can mean either a
positional parameter or a shell variable.

The tcsh shell also supports more complicated forms of parameter expansions, letting you obtain only
part of a parameter value or a modified form of the value.

Modifier Description

r Root of value

e Extension of value

h Head of value

t Tail of value

For example, to extract only part of a file name, you can add one of these modifiers as follows:

File name r e h t

/usr/bin/vi.txt /usr/bin/vi txt /usr/bin vi.txt

/u/bobby/mail /u/bobby/mail empty /u/bobby mail

storybook.pdf storybook pdf empty storybook.pdf

INSTALL INSTALL empty empty INSTALL

Using special parameters in commands and shell scripts
The tcsh shell has a variety of special parameters that can be used in command lines and shell scripts.
These parameters are listed in the Variable Substitution topic of the tcsh command description in z/OS
UNIX System Services Command Reference.

Writing tcsh shell scripts 131

Using control structures
The shell provides facilities similar to those found in programming languages. It offers these control
structures, which are related to programming control structures:

• The if conditional
• The while loop
• The for loop

The if conditional
An if conditional runs a sequence of commands if a particular condition is met. It has the form:

if (expr) command

The end of the commands is indicated by endif. For example, you could have:

if (-d $1) then
 ls $1
endif

This tests to see if the string associated with the first positional parameter, $1, is the name of a directory.
If so, it runs an ls command to display the contents of the directory.

Any number of commands can come between the then and the endif that ends the control structure.
For example, you might have written:

if (-d $1) then
 echo "$1 is a directory"
 ls $1
 endif

This example also shows that the commands do not have to begin on the same line as then, and the
condition being tested does not have to begin on the same line as if. The condition and the commands
are indented to make them stand out more clearly. This is a good way to make your shell scripts easier to
read.

Another form of the if conditional is:

if (expr) then
commands
else
commands
endif

If the condition is true, the commands after the then are run; otherwise, the commands after the else
are run. For example, suppose you know that the string associated with the variable pathname is the
name of either a directory or a file. Then you could write:

if (-d $pathname) then
 echo "$pathname is a directory"
 ls $pathname
 else
 echo "$pathname is a file"
 cat $pathname
 endif

If the value of pathname is the name of a file, this shell script uses echo to display an appropriate
message, and then uses cat to display the contents of the file.

The final form of the if control structure is:

if (expr1) then
commands1
else if (expr2) then
commands2
else if (expr3) then

132 z/OS: UNIX System Services User's Guide

commands3
else
commands
endif

In this example, if expr1 is true, commands1 are run; otherwise, the shell goes on to check expr2. If that is
true, commands2 are run; otherwise, the shell goes on to check expr3 and so on. If none of the test
conditions are true, the commands after the else are run. Here is an example of how this can be used:

if (! $?argv) then
 echo "no positional parameters"
 else if (-d $1) then
 echo "$1 is a directory"
 ls $1
 else if (-f $1) then
 echo "$1 is a file"
 cat $1
 else
 echo "$1 is just a string"
 endif

The test after the if determines if the value of the first positional parameter, $1, is an empty string. If so,
there are no positional parameters, and the shell script uses echo to display an appropriate message;
otherwise, the script checks to see if the parameter is a directory name; if so, the contents of the directory
are listed with ls (after an appropriate message). If that does not work, the script checks to see if the
parameter is a file name; if so, the contents of the file are listed with cat (after an appropriate message).
Finally, if none of the previous tests work, the parameter is assumed to be an arbitrary string, and the
script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:

listit name

to list the contents of name in a useful form.

The while loop
The while loop repeats one or more commands while a particular condition is true. The loop has the
form:

while (expr)
commands
end

The shell first tests to see if condition (expr) is true. If it is, the shell runs the commands. The shell then
goes back to check the condition. If it is still true, the shell runs the commands again, and so on, until the
condition is found to be false.

As an example of how this can be used, suppose you want to run a program named prog 100 times to get
an idea of the program's average running speed. The following shell script does the job:

@ i=100
date
while ($i > 0)
 prog
 @ i--
end
date

The script begins by setting a variable i to 100. It then uses the date command to get the current date
and time.

Next the script runs a while loop. The condition says that the loop should keep on going as long as the
value of i is greater than zero. The commands of the loop run prog and then subtract 1 from the i variable,
similar to C programming language syntax. In this way, i goes down by 1 each time through the loop, until
it is no longer greater than 0. At this point, the loop stops and the final instruction of the script prints out
the date and time at the end of the loop. The difference between the starting time and the ending time
should give some idea of how long it took to run the program 100 times.

Writing tcsh shell scripts 133

(Of course, the shell itself takes some time to perform the condition and to do the calculations with i. If
prog takes a long time to run, the time spent by the shell is relatively unimportant; if prog is a quick
program, the extra time that the shell takes may be large enough to make the timing incorrect.)

The foreach loop
The final control structure to be examined is the foreach loop. It has the form:

foreach name (wordlist)
commands
end

The parameter name must be a variable name; if this variable does not exist, it is created. The parameter
list is a list of strings separated by spaces. The shell begins by assigning the first string in list to the
variable name. It then runs the commands once. Then the shell assigns the next string in list to name, and
repeats the commands. The shell runs the commands once for each string in list.

As a simple example of a shell script that uses foreach, consider:

foreach file (*.c)
 c89 $file
end

When the shell looks at the foreach line, it expands the expression *.c to produce a list containing the
names of all files (in the working directory) that have the suffix .c. The variable file is assigned each of the
names in this list, in turn. The result of the foreach loop is to use the c89 command to compile all .c files
in the working directory. You could also write:

foreach file (*.c)
 echo $file
 c89 $file
end

so that the shell script displayed each file name before compiling it. This would let you keep track of what
the script was doing.

As you can see, the foreach loop is a powerful control structure. The list can also be created with
command substitution, as in:

foreach file (`find . -name "*.c" -print`)
 echo $file
 c89 $file
end

Here the find command finds all .c files in the working directory, and then compiles these files. This is
similar to the previous shell script, but it also looks at subdirectories of the working directory.

Combining control structures
You can combine control structures by nesting (that is, putting one inside another). For example:

foreach file (`find . -name "*.c" -print`)
 if (-M $file > -M $1) then
 echo $file
 c89 -c $file
 endif
end

This shell script takes one positional parameter, giving the name of a file. The script looks in the working
directory and finds the names of all .c files. The if control structure inside the foreach loop tests each
file to see if it is older than the file named on the command line. If the .c file is older, echo displays the
name, and the file is compiled. You can think of this as making a set of files up to date with the file name
specified on the command line.

134 z/OS: UNIX System Services User's Guide

Chapter 10. Using job control in the shells

When you enter a shell command, you start a process, the execution of a function. When you enter that
command, the shell runs it in its own process group. As such, it is considered a separate job and the shell
assigns it a job identifier, which is a small number known only to the shell. (A shell job identifier identifies
a shell job, not an MVS job.) When the process completes, the system displays the shell prompt.

The system also assigns a process group identifier (PGID) and a process identifier (PID). When only one
command is entered, the PGID is the same as the PID. The PGID can be thought of as a systemwide
identifier. If you enter more than one command at a time using a pipe, several processes, each with its
own PID, are started. However, these processes all have the same PGID and shell job identifier. The PGID
is the same as the PID of the first process in the pipe.

To sum it up, there are several types of process identifiers associated with a process:
PID

A process ID (PID) is a unique identifier assigned to a process while it runs. When the process ends,
its PID is returned to the system. Each time you run a process, it has a different PID (it takes a long
time for a PID to be reused by the system). You can use the PID to track the status of a process with
the ps command or the jobs command, or to end a process with the kill command.

PGID
Each process in a process group shares a process group ID (PGID), which is the same as the PID of
the first process in the process group. This ID is used for signaling related processes.

If a command starts just one process, its PID and PGID are the same.

PPID
A process that creates a new process is called a parent process; the new process is called a child
process. The parent process ID (PPID) becomes associated with the new child process when it is
created. The PPID is not used for job control.

Several job control commands can either take as input or return the job identifier, process identifier, or
process group identifier: bg, fg, jobs, kill, and wait.

The nice and renice commands can be used to change the priority of processes. Their use is dependent
on the way performance groups have been prioritized at your installation; check with your system
administrator for information about using nice and renice to change job priority.

Running several jobs at once (foreground and background)
The shell can run more than one job at a time. While one is running in the foreground, one or more can be
running in the background.

After you enter a command, you see the output from the command displayed on your screen. You cannot
enter any other commands until the shell prompt ($ or >) appears. This command has run as a foreground
job. Commands that take a few seconds to complete are convenient to run in the foreground.

You may prefer to run as background jobs those shell commands that take longer to run, because they
prevent you from running any other commands while they are running in the foreground. The shell does
not wait for the completion of a background command before returning a prompt to you. Instead, while
the command runs in the background, you can continue entering other commands on the command line.

In TSO/E, a background job is one that is typically entered at a workstation by a SUBMIT command. Like a
TSO/E background job or a batch job, a z/OS UNIX background job runs without user interaction.

You can use any of these methods to run a shell background job:

• Start the job in the background when you first enter it.
• Move a job from the foreground to the background.

© Copyright IBM Corp. 1996, 2018 135

• Use JCL with BPXBATCH. This utility is discussed in “The BPXBATCH utility” on page 145.

Starting a job in the background with an ampersand (&)
To start a command as a background job, end the command line with an ampersand (&). For example:

sort myfile >myout &

When the background job starts to run, the system:

1. Assigns it a job identifier, a process group ID (PGID), and a process ID (PID).
2. Displays the job identifier (in brackets) and one or more PIDs (more than one if there is a pipe).
3. Issues the shell prompt so that you can enter another command.

The first (or only) PID is also the PGID. This is an example of the output when you enter a background
command:

$sort myfile >myout &
[3] 717046
$

3 is the job identifier and 717046 is the PID and PGID.

Tip: Note the PID numbers and the job number when you create a background job; you can use them to
check the status of the job or to end it.

Unlike a batch job, a shell job running in the background directs its output to standard output, your
workstation screen. If you do not want to have this output interfering with your work in the foreground,
remember to redirect the output to a file when you start a background command. After the output is
redirected, you can look at it whenever it is convenient.

A background job can be suspended. A background job that attempts to read from stdin is suspended
until it is made the foreground process. Therefore, if a program reads from stdin, you may want to redirect
stdin from a file. Also, if the tostop setting of the terminal is enabled (you can set or query this by using
the stty command), output from a background job causes the job to be suspended.

Moving a job to the background
Suppose you want to move the foreground job to the background, where it can run while you enter other
commands in the foreground. To put the job in the background:

1. Stop the job by entering <EscChar-Z>. A message displays the job identifier.
2. Enter the bg command. You may need to specify the job identifier with bg if there is more than one

stopped job. If you do not specify a job identifier, bg uses the most recently stopped job.

A message displays the job identifier and the command that is running in the background.

Moving a job to the foreground
When you want to move a job from the background to the foreground, use the fg command. If there are
multiple background jobs, you need to supply the job identifier preceded by a % sign. For example:

fg %7

Setting up job tracing
The bpxtrace command provides details on job activity. It enables you to start a job with tracing
activated, or enables you to dynamically activate tracing for a job that is already running. For example, to
activate job tracing for the echo command, enter:

 bpxtrace -c -f format "echo hello"

136 z/OS: UNIX System Services User's Guide

This command produces tracing output (to stdout) and formats the output in one line per trace record
format. For more information about the bpxtrace command, see z/OS UNIX System Services Command
Reference.

Checking the status of jobs
You can use the jobs command or the ps command to check on the status of jobs.

Using the jobs command
The jobs command reports the status of background processes that are currently running, based on the
job identifier; it also reports on the status of stopped processes and completed processes. If you use the
-l option, you can display both the job identifier and the PID for the process.

Say you entered a command that involves more than one process, for example:

myprog | grep write

If you want to check the status of that command, use the jobs -l command. The status message
displays the job identifier, the PID number for each process in the job, the status of the command, and the
command that is being run. In this case the status message shown in the z/OS shell is:

 [1] 720902 + Stopped (SIGTSTP) myprog|grep write
 720902 alive -sh
 458759 alive -sh

In this case:

• The job identifier is 1 (from [1]).
• The PIDs of the processes are 720902 and 458759.
• The PGID is 720902 (the PID of the first process in the process group).

The status message for the tcsh shell is similar to that in the previous example.

Using the ps command
You can use the ps command to display a list of your processes that are currently running and obtain
additional information about those processes. (Only a superuser or a user with appropriate permissions
can obtain information about all processes.)

For example, here the ps command displays the status of started processes:

 PID TTY TIME COMMAND
 262148 ttyp0000 2:46 /bin/sh
 196614 ttyp0000 0:22 ./myprog
 65543 ttyp0000 0:13 /bin/grep
 196616 ttyp0000 2:07 /bin/ps

PID
This is a PID displayed as a decimal value.

TTY
The name of the controlling terminal, if any. The controlling terminal is the workstation that started the
process. On a system with more than one workstation, the names of the workstations that have
started processes are listed here.

TIME
The amount of central processor time the process has used since it began running.

COMMAND
The name of the command or program that started the process. The display indicates which directory
the command or program is found in. For example, the ps command is in /bin.

Using job control in the shells 137

Usually, just issuing ps will tell you all you need to know about your current processes. However, there are
a number of options you can use to tailor the displayed information. For example, you can use the –a
option to display only processes associated with a terminal, not the system processes. Read the ps
command description in z/OS UNIX System Services Command Reference.

Canceling a job
Often you will start a job and then decide to interrupt it before it completes. You can do this regardless of
whether the job is running in the foreground or background.

Canceling a foreground job
To cancel a foreground job, enter <EscChar-C>. The command stops and the shell displays the shell
prompt.

Canceling a background job
To cancel a background job, use the kill command. To be able to kill a process, you must own it. (The
superuser, however, can kill any process except init.)

Before you can cancel a background job, you need to know either a PID, job identifier, or PGID. You can
use the jobs command to determine any of these.

The format of the kill command in the z/OS shell is:

kill [-s signal name] [pid] [job-identifier]

The format of the kill command in the tcsh shell is:

kill [-signal name] [pid] [job-identifier]

To kill one process, use its PID.

Example: To kill a process with the PID 717, issue:

kill 717

Any other processes in the job—from a pipe—would not be killed.

To kill a particular process group, you can use a job identifier or a negative PGID.

• You can use the job identifier for one process in the group preceded with a % to kill every process in the
group. In the z/OS shell, use:

kill -s KILL %7

In the tcsh shell, use:

kill -KILL %7

• You can use a negative PGID to kill every process in a process group. (The PGID is the PID for the first
process in the process group.) For example, in the z/OS shell:

kill -s KILL -- -123456

will kill every process in the process group with PGID 123456.

In the tcsh shell:

kill -KILL -123456

will kill every process in the process group with PGID 123456.

138 z/OS: UNIX System Services User's Guide

Stopping and resuming a job
Occasionally, you might want to stop a job that is running in the foreground or background, perform a
different task, and then later resume the stopped job.

Stopping a foreground job
To stop a foreground job, enter <EscChar-Z>. A message displays the job identifier, the status Stopped,
and the command that is stopped.

Stopping a background job
To stop a background job, use the kill command with the STOP signal and the job identifier preceded
with a %.

Examples::

1. In the z/OS shell, to stop a background job with the job identifier 3, issue:

kill -s -STOP %3

2. In the tcsh shell, to stop a background job with the job identifier 3, issue:

kill -STOP %3

Resuming a stopped job
When you are ready to resume a stopped job, you can resume it in the foreground using the job identifier.
Enter:

fg %n

where n is the job identifier for the stopped job.

To resume a stopped job in the background, enter:

bg %n

where n is the job identifier for the stopped job. The %n is unnecessary if there is only one job.

Delaying a command
If you want to delay a command from running until a previous background job has completed, you can use
the wait command. You need to know the job identifier of the job you want to wait for; you can use the
jobs command to get that.

For example, to have Time for tea display on your screen when the command whose job identifier is 7
finishes running, issue:

wait %7; print "Time for tea"

Exiting the shell with background jobs running
When you exit the shell, any stopped background jobs are terminated. But if you have a background job in
the running state, you can exit the shell without terminating it.

In the z/OS shell, the default setting set -m runs background jobs in a separate process group. Jobs in a
separate process group are not sent a SIGHUP signal when you exit the shell. With the default -m setting,
background jobs continue to run after you exit the shell.

Using job control in the shells 139

In the tcsh shell, use NOHUP to exit the shell with background jobs running.

For the OMVS interface:

To exit with a background job running, use the quit subcommand. (Type quit and press the
Subcommand function key or switch to subcommand mode and enter the quit command.) A background
job that is running will continue running.

If you are using the OMVS interface and you use the exit command to exit the shell while you have a
shell background job running, OMVS may send this message:

The shell process ended, but the session did not end automatically.
You may need to run the QUIT subcommand to end the session.

For the Asynchronous terminal interface:

To exit when a background job is running, type <Ctrl-D> or use the exit command. A background job that
is running will continue running. You do not get any indication that a background job is running.

Changing the default in the z/OS shell
If you change the setting to +m, background jobs end when you exit the shell. If you have changed the
setting to +m and you want to start a long-running command and have it continue running after you exit
the shell, use the nohup command and an ampersand (&):

nohup 'command-line' &

For example:

nohup sort -u file1 >output 2>>outerr &

Ending the nohup command with an & makes the command run in the background, even after you exit the
shell.

Comparison of shell background jobs and MVS batch jobs
Table 9 on page 140 compares two methods for submitting a background job:

• Typing an & (ampersand) after the shell command
• Using JCL with BPXBATCH. This utility is discussed in “The BPXBATCH utility” on page 145.

Table 9: Comparison of running a background job from the shell and from MVS

Topic Shell (command &) JCL with BPXBATCH

Starting the job Background jobs start running immediately. Background jobs are put in a queue; there
may be a wait until the job starts running.

Interactive access You can see output from the job displayed
on the terminal. You can move the job to
the foreground if you need to give it input,
and then move it to the background again.

Background jobs run separately; you
cannot interact with them.

However, if you redirect output to a file in
the file system, from your interactive shell
session you could periodically browse the
output file to see what is in it. You could do
this with any of these commands: cat, pg,
more, obrowse, or the TSO/E OBROWSE
command.

140 z/OS: UNIX System Services User's Guide

Table 9: Comparison of running a background job from the shell and from MVS (continued)

Topic Shell (command &) JCL with BPXBATCH

System limits Due to system limits on the number of
processes per user, multiple background
jobs run by the same user could fail at
some point.

Due to system limits on the number of
processes per user, multiple background
jobs run by the same user could fail at
some point.

Managing the job You can use ps, kill, bg, fg and jobs on
the background job.

You can use ps and kill on the
background job.

Impact on system Creates an immediate demand on the
system to support another address space.
This could degrade performance for all
users.

The system determines when it is a
reasonable time to run batch jobs. Batch
work can be suspended during periods of
heavy interactive workload.

Using job control in the shells 141

142 z/OS: UNIX System Services User's Guide

Chapter 11. Using z/OS UNIX from batch, TSO/E, and
ISPF

Note: This information is directed towards users of the z/OS shell. Most examples pertain to the z/OS
shell and not the tcsh shell.

You can access z/OS UNIX services from batch, TSO/E, or ISPF, using:

• Job control language (JCL) to run shell scripts or z/OS UNIX application programs as batch (background)
jobs. This information describes the JCL that supports the z/OS UNIX file system. For more general
information about JCL, see z/OS MVS JCL User's Guide. and z/OS MVS JCL Reference.

• Executable files in batch. An executable file is any file that can be run as a program. An executable file
can be a load module (which is a member of a PDS), a program object (which is either a member of a
PDSE or a file in the z/OS UNIX file system), or an interpreted file (such as a REXX EXEC). For a file to be
treated as an executable file, it must have execute permission allowed for the invoker.

• BPXBATCH, a utility that can do the following:

– Run executable files in batch.
– Run shell commands and executable files from the TSO/E READY prompt.

• TSO/E commands designed to work with MVS data sets. See the section on using commands to work
with directories and files and also the section on copying data between the z/OS UNIX file system and
MVS data sets for more information. For the complete command descriptions, see the section on TSO/E
commands in z/OS UNIX System Services Command Reference.

• REXX programs that are written using z/OS UNIX extensions called syscall commands.
• The ISPF shell.

JCL support for z/OS UNIX
JCL data definition (DD) statements use a data definition name (ddname) to specify the data to be used by
the program that you are submitting as a batch job. The ddname is used in two places:

1. In your application program. Here the ddname refers to nonspecific data, rather than a specific data
set name or path name.

2. In the JCL used to submit the application program as a background job. Here it binds the nonspecific
reference in the program to a specific data set name or path name.

You can specify a z/OS UNIX file in the JCL for user-written applications or for IBM-supplied services,
such as:

• DFSMS, Program Management Binder, a prelinker, or a linkage editor
• BPXBATCH
• The TSO/E OCOPY command

Note: In this discussion, references to JCL also apply to the equivalent dynamic allocation functions.

The PATH keyword
You can use the PATH keyword on a JCL DD statement to specify the path name for a z/OS UNIX file.
When you use the PATH keyword, you can also use these keywords:

• PATHOPTS to indicate the access for the file (for example, read or read-write) and to set the status for
the file (for example, append, create, or truncate). This is analogous to the option arguments on the C
open() function.

© Copyright IBM Corp. 1996, 2018 143

Note: If you specify either OCREAT or OCREAT together with OEXCL on the PATHOPTS parameter and
the file does not exist, z/OS UNIX performs an open() function. The options from PATHOPTS, the path
name from the PATH parameter, and the options on PATHMODE (if specified) are specified in the
open(). z/OS UNIX uses the close() function to close the file before the application program receives
control.

• PATHMODE to indicate the permissions, or file access attributes, to be set when a file is being created.
This is analogous to the mode arguments of the open() function.

• PATHDISP to indicate how MVS should handle the file when the job step ends normally or abnormally.
This performs the same function as the DISP parameter for a data set.

If PATHOPTS and PATHMODE are absent from the DD statement, an application needs to supply defaults
for the options and mode, or issue an error message and fail.

The DSNTYPE keyword
There are two related subparameters on the DSNTYPE keyword of the DD statement:

• HFS (hierarchical file system)
• PIPE (named pipe)

For more information about the JCL keywords, see z/OS MVS JCL Reference.

Using the ddname in an application
Instead of using data set names or path names in an application, you can use a ddname; then in the JCL,
you associate a specific data set or file with that ddname.

Note: The parent process's allocations, for both data sets and files, are not propagated by fork()and are
lost on exec(), except for STEPLIB.

You have a choice of two methods for accessing data sets and files in an application:

• The ANSI C function fopen().
• The OPEN macro.

The fopen() function

The fopen() function recognizes and handles the difference between a ddname associated with a data
set (DSN keyword) or with a path name (PATH keyword).

Example: Issue:

fopen("dd:FRED", "r+")

Result: The fopen() function takes the ddname FRED, determines if FRED refers to a ddname for a file
or a data set, and opens it. Once a file is opened, fread() and fwrite() can access the data

The OPEN macro

The OPEN macro can open a z/OS UNIX file specified with the PATH keyword or an MVS data set specified
with the DSN keyword. The macro supports DD statements that specify the PATH parameter only for data
control blocks that specify DSORG=PS (EXCP is not allowed). DFSMSdfp supports BSAM and QSAM
interfaces to these types of files:

• Regular files
• Character special files (null files only)
• FIFO special files
• Symbolic links

You cannot open directories or external links.

144 z/OS: UNIX System Services User's Guide

For more information about BSAM and QSAM interface support for access to z/OS UNIX files, see z/OS
DFSMS Macro Instructions for Data Sets.

Specifying a ddname in the JCL
In the JCL for a job, you use a DD statement to associate a ddname with the name of a specific MVS data
set or z/OS UNIX file.

To specify a file, use the PATH keyword.

Example: To associate the path name for the file /u/fred/list/wilma with the ddname FRED, specify:

//FRED DD PATH='/u/fred/list/wilma'

At another time, you might specify a different file to be associated with the ddname FRED.

To specify a data set, use the DSN keyword.

Example: To associate the data set FRED.LIST.WILMA with the ddname FRED, specify:

//FRED DD DSN=FRED.LIST.WILMA,DISP=SHR

At another time, you might specify a different data set to be associated with the ddname FRED.

Using the submit command
The submit command submits JCL from the shell. By using this command you do not need to open a TSO
session to submit JCL. This command accepts the following as input:

• One or more pathnames
• One or more sequential data set or partitioned data set member names
• Standard input.

For example, to submit a job that resides in the z/OS UNIX file buildjcl.jcl, enter the following:

submit buildjcl.jcl

For more information about the submit command, see z/OS UNIX System Services Command Reference.

The BPXBATCH utility
BPXBATCH is a utility that you can use to run shell commands or executable files through the batch
facility. You can invoke BPXBATCH from a batch job or from the TSO/E environment (as a command,
through a CALL command, or from a CLIST or REXX EXEC).

Note: This document provides some examples of how you can use BPXBATCH. For more detailed
information about BPXBATCH, see the description of the BPXBATCH utility and the detailed discussion on
using BPXBATCH to run executable files under MVS environments in z/OS UNIX System Services Command
Reference.

BPXBATCH has logic in it to detect when it is running from a batch job. By default, BPXBATCH sets up the
stdin, stdout, and stderr standard streams (files) and then calls the exec callable service to run the
requested program. The exec service ends the current job step and creates a new job step to run the
target program. Therefore, the target program does not run in the same job step as the BPXBATCH
program; it runs in the new job step created by the exec service. In order for BPXBATCH to use the exec
service to run the target program, all of the following must be true:

• BPXBATCH is the only program running on the job step task level.
• The _BPX_BATCH_SPAWN=YES environment variable is not specified.
• The STDOUT and STDERR ddnames are not allocated as MVS data sets.

Using z/OS UNIX from batch, TSO/E, and ISPF 145

If any of the these conditions is not true, then the target program runs either in the same job step as the
BPXBATCH program or in a WLM initiator in the OMVS subsys category. The determination of where to run
the target program depends on the environment variable settings specified in the STDENV file and on the
attributes of the target program.

Restriction: File and data set allocation considerations vary when a BPXBATCH or BPXBATSL request is
processed in the same address space via local spawn or forked to another address space. Allocations for
any files and data sets other than stdin, stdout, stderr, or stdenv and STEPLIB are not available to a
program when BPXBATCH uses fork() or exec (STEPLIB EXCLUDED) to run a program in another address
space. Data sets that are allocated in JCL, TSO, or an application may conflict with data sets used by
BPXBATCH.

Aliases for BPXBATCH
BPXBATSL, BPXBATA2, and BPXBATA8 are provided as aliases for BPXBATCH that use a local spawn to
run in the same address space.

BPXBATSL

BPXBATSL performs a local spawn, but does not require resetting of environment variables. BPXBATSL
behaves exactly like BPXBATCH and allows local spawning whether the current environment is set up or
not. For more information, see the BPXBATCH command in z/OS UNIX System Services Command
Reference.

BPXBATA2 and BPXBATA8

BPXBATA2 and BPXBATA8 are provided as APF-authorized alternatives to BPXBATSL. BPXBATA2 and
BPXBATA8 provide the capability for a target APF-authorized z/OS UNIX program to run in the same
address space as the originating job, allowing it to share the same resources, such as allocations and the
job log. See the BPXBATCH utility in z/OS UNIX System Services Command Reference for details and
restrictions on using these interfaces.

Defining standard input, output, and error streams for BPXBATCH
z/OS XL C/C++ programs require that the standard streams, stdin, stdout, and stderr, be defined as
either a file or a terminal. Many C functions use stdin, stdout, and stderr. For example:

• getchar() obtains a character from stdin.
• printf() writes output to stdout.
• perror() writes output to stderr.

(For more information about stdin, stdout, and stderr, see “Understanding standard input, standard
output, and standard error” on page 62.)

Guidelines for defining stdin, stdout, and stderr

For BPXBATCH, the default for stdin and stdout is /dev/null.

The default for stderr is the same as what is defined for stdout. For instance, if you define stdout to
be /tmp/output1 and you do not define stderr, then both printf() and perror() direct their output
to /tmp/output1.

Tip: If you define stdin, it must be a z/OS UNIX file.

If you define stdout or stderr, it can be a z/OS UNIX file or an MVS data set.

If you use an MVS data set for stdout or stderr:

• It can be a sequential data set, a partitioned data set (PDS) member, a partitioned data set extended
(PDSE) member, or SYSOUT.

• It must have a nonzero logical record length (LRECL) and a defined record format (RECFM). Otherwise,
BPXBATCH will redirect the DD to/dev/null and issue message BPXM081I, indicating the redirection
of the effected ddname.

146 z/OS: UNIX System Services User's Guide

Ways to define stdin, stdout, and stderr

You can define stdin, stdout, and stderr in the following ways:

• With the The TSO/E ALLOCATE command, using the ddnames STDIN, STDOUT, and STDERR. For
example, the following command allocates the z/OS UNIX file /u/turbo/myinput to the STDIN
ddname:

ALLOCATE DDNAME(STDIN) PATH('/u/turbo/myinput') PATHOPTS(ORDONLY)

• The following command allocates the MVS sequential data set TURBO.MYOUTPUT to the STDOUT
ddname:

ALLOCATE DDNAME(STDOUT) DSNAME('TURBO.MYOUTPUT') VOLUME(volser) DSORG(PS)
 SPACE(10) TRACKS RECFM(F,B) LRECL(512) NEW KEEP

• A JCL DD statement, using the ddnames STDIN, STDOUT, and STDERR

The following JCL allocates the z/OS UNIX file /u/turbo/myinput to the STDIN ddname:

//STDIN DD PATH='/u/turbo/myinput',PATHOPTS=(ORDONLY)

The following JCL allocates member M1 of a new PDSE TURBO.MYOUTPUT.LIBRARY to the STDOUT
ddname and directs STDERR output to SYSOUT:

//STDOUT DD DSNAME=TURBO.MYOUTPUT.LIBRARY(M1),DISP=(NEW,KEEP),DSNTYPE=LIBRARY,
// SPACE=(TRK,(5,1,1)),UNIT=3390,VOL=SER=volser,RECFM=FB,LRECL=80
//STDERR DD SYSOUT=*

• Redirection, using <, >, and >>

Even if stdout currently defaults to /dev/null, entering the following command from the TSO/E
command prompt redirects the output of the ps -el command to be appended to the file /tmp/
ps.out:

BPXBATCH SH ps -el >>/tmp/ps.out

For more information about defining the standard streams for BPXBATCH, see the detailed discussion on
using BPXBATCH in the appendix of z/OS UNIX System Services Command Reference.

Passing environment variables to BPXBATCH
When you are using BPXBATCH to run a program, you typically pass the program a file that sets the
environment variables. If you do not pass an environment variable file when running a program with
BPXBATCH, or if the HOME and LOGNAME variables are not set in the environment variable file, those two
variables are set from your logon RACF profile. LOGNAME is set to the user name, and HOME is set to the
initial working directory from the RACF profile.

Note: When using BPXBATCH with the SH option (SH is the default), environment variables specified in
the STDENV DD are overridden by those specified in /etc/profile and .profile (which
overrides /etc/profile). This is because SH causes BPXBATCH to execute a login shell that runs
the /etc/profile script and runs the user's .profile.

To pass environment variables to BPXBATCH, you define a file containing the variable definitions and
allocate it to the STDENV ddname. The file can be one of the following:

• A z/OS UNIX file identified with the ddname STDENV.
• An MVS data set identified with the ddname STDENV.

Guidelines for defining STDENV

The default for STDENV is /dev/null.

The following guidelines apply when you specify a z/OS UNIX file for STDENV:

Using z/OS UNIX from batch, TSO/E, and ISPF 147

• It must be a text file defined with read-only access.
• Specify one variable per line, in the format variable=value. Environment variable names must begin

in column 1.
• The file cannot have sequence numbers in it.

If you use the ISPF editor to create the file, set the sequence numbers off by typing NUMBER OFF on the
command line before you begin typing the data. If sequence numbers already exist, type UNNUM to
remove them and then type NUMBER OFF.

The following guidelines apply when you specify an MVS data set for STDENV:

• It must be a sequential data set, a PDS member, a PDSE member, or an JCL in-stream data set.
• The record format can be fixed or variable (unspanned).
• Specify one environment variable per record, in the format variable=value. Environment variable

names must begin in column 1. Do not use terminating nulls.
• The data set cannot have sequence numbers in it.

If you use the ISPF editor to create the file, set the sequence numbers off by typing NUMBER OFF on the
command line before you begin typing the data. If sequence numbers already exist, type UNNUM to
remove them and then type NUMBER OFF.

• Trailing blanks are truncated for in-stream data sets, but not for other data sets.

Ways to define STDENV

You can define the STDENV environment variable file in the following ways:

• The TSO/E ALLOCATE command.

Example: The environment variable definitions reside in the MVS sequential data set TURBO.ENV.FILE.

ALLOCATE DDN(STDENV) DSN('TURBO.ENV.FILE') SHR

• A JCL DD statement. To identify a z/OS UNIX file, use the PATH operand and specify
PATHOPTS=ORDONLY.

Example: The environment variable definitions reside in the z/OS UNIX file u/turbo/env.file.

//STDENV DD PATH='u/turbo/env.file',PATHOPTS=ORDONLY

• An JCL in-stream data set.

Example: The environment variable definitions immediately follow the STDENV DD statement.

//STDENV DD *
variable1=aaaaaaa
variable2=bbbbbbbb ⋮
variable5=ffffffff
/*

Trailing blanks are truncated for in-stream data sets, but not for other data sets.
• SVC 99 dynamic allocation, if you are running BPXBATCH from a program.

For more information about defining STDENV, see the detailed discussion about using BPXBATCH in z/OS
UNIX System Services Command Reference.

Example: Setting up code page support in a STDENV file

To enable national language support for BPXBATCH, set the locale environment variables to your desired
locale in the STDENV file. For example, to use the Danish locale, you could put these lines in the file:

LANG=Da_DK.IBM-277
LC_ALL=Da_DK.IBM-277

148 z/OS: UNIX System Services User's Guide

After you allocate this file to STDENV, you can test it by typing:

OSHELL echo $HOME

The path name of your home directory should be displayed, instead of just $HOME.

_BPX_BATCH_SPAWN and _BPX_BATCH_UMASK environment variables

BPXBATCH uses two environment variables for execution that are specified by STDENV:

• _BPX_BATCH_UMASK=0755
• _BPX_BATCH_SPAWN=YES|NO

_BPX_BATCH_UMASK allows the user the flexibility of modifying the permission bits on newly created
files instead of using the default mask (when PGM is specified).

Valid characters for the mask value are the octal digits 0 to 7, inclusive. If an invalid character is found,
that character and all subsequent characters to the right are ignored. For example, 0348 is interpreted as
0034 and 0586 is interpreted as 0005.

Note: This variable is overridden by umask (usually set from within /etc/profile) if BPXBATCH is
invoked with the SH option (SH is the default). SH causes BPXBATCH to execute a login shell, which runs
the /etc/profile script (and runs the user's .profile) and which might set the umask before
execution of the intended program.

_BPX_BATCH_SPAWN causes BPXBATCH to use spawn instead of fork/exec and allows data definitions to
be carried over into the spawned process. When _BPX_BATCH_SPAWN is set to YES, spawn will be used.
If it is set to NO, which is equivalent to the default behavior, fork/exec will be used to execute the
program.

If _BPX_BATCH_SPAWN is set to YES, you must consider two other environment variables that affect
spawn (BPX1SPN):

• _BPX_SHAREAS=YES|NO|REUSE

When _BPX_SHAREAS is YES or REUSE, the child process that is created by spawn will run in the same
address space as the parent's under these conditions:

– The child process is not setuid or setgid to a value different from the parent.
– The spawned file name is not an external link or a sticky bit file.
– The parent has enough resources to allow the child process to reside in the same address space.
– The NOSHAREAS extended attribute is not set.

When _BPX_SHAREAS is NO, the child and parent are run in separate address spaces.
• _BPX_SPAWN_SCRIPT=YES

When _BPX_SPAWN_SCRIPT is YES, the spawn will treat the specified file as a shell script and will
invoke the shell to run the shell script.

Setting _BPX_SPAWN_SCRIPT=YES improves shell script performance. See “Improving the performance
of shell scripts” on page 40 for more information. For more information about spawn, see spawn
(BPX1SPN, BPX4SPN) — Spawn a process in z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

Passing parameter data to BPXBATCH
Normally, you pass parameters to BPXBATCH using the parameter string—either in a batch job by using
the PARM= parameter on the JCL EXEC statement (see “Invoking BPXBATCH in a batch job” on page 151)
or in TSO by typing them on the command line (see “Invoking BPXBATCH from the TSO/E environment”
on page 154). The format of the BPXBATCH parameter string is:

SH|PGM shell_command|shell_script|program_name [arg1...argN]

Using z/OS UNIX from batch, TSO/E, and ISPF 149

In a batch job, BPXBATCH only allows up to 100 bytes for the parameter string due to JCL limitations. In a
TSO command environment, the maximum length of a parameter string is 32,754 bytes. However,
BPXBATCH supports the use of a parameter file to pass much longer parameter data—up to 65,536 (64K)
bytes.

To pass parameters to BPXBATCH using a parameter file, you define a file containing the parameter data
and allocate it to the ddname STDPARM. The parameter file can be one of the following:

• A z/OS UNIX text file
• An MVS data set

The default is to use the parameter string specified on the TSO command line or in the PARM= parameter
of the JCL EXEC statement. If the STDPARM ddname is defined, BPXBATCH uses the data found in the
specified file rather than what is found in the parameter string or in the STDIN ddname.

Guidelines for defining STDPARM

The contents of the STDPARM file must follow the same format as the BPXBATCH parameter string.

The following guidelines apply when you specify a z/OS UNIX or an MVS data set for STDPARM:

• A z/OS UNIX file must be a text file that the user has read access to. An MVS data set must be a
sequential data set, a PDS member, a PDSE member, or a JCL in-stream data set.

• The record format can be fixed or variable (unspanned).
• For in-stream data sets: with the SH option, trailing blanks are not truncated. Records in in-stream data

sets are concatenated with blanks as separator characters, and the string remaining after the SH token
is passed as a single argument to a /bin/sh -c command. For the PGM option, the string is divided not
only at line boundaries but also at blanks within a line.

• The file or data set should not have sequence numbers in it.

Tip: If you use the ISPF editor to create the file, set the sequence numbers off by typing NUMBER OFF
on the command line before you begin typing the data. If sequence numbers already exist, type UNNUM
to remove them and then type NUMBER OFF.

Ways to define STDPARM

You can define the STDPARM parameter file by using one of the following:

• The TSO/E ALLOCATE command

Example: The parameter data to be passed to BPXBATCH resides in the MVS sequential data set
TURBO.ABC.PARMS.

ALLOCATE DDNAME(STDPARM) DSN('TURBO.ABC.PARMS') SHR

• A JCL DD statement. To identify a z/OS UNIX file, use the PATH operand and specify
PATHOPTS=ORDONLY.

Example: The parameter data resides in the z/OS UNIX file /u/turbo/abc.parms.

//STDPARM DD PATH='/u/turbo/abc.parms',PATHOPTS=ORDONLY

Example: The BPXBATCH parameter data resides in member P1 of the MVS PDSE
TURBO.PARM.LIBRARY.

//STDPARM DD DSN=TURBO.PARM.LIBRARY(P1),DISP=SHR

• An JCL in-stream data set

The BPXBATCH parameter data immediately follows the STDPARM DD statement. Trailing blanks are
truncated for in-stream data sets, but not for other data sets.

150 z/OS: UNIX System Services User's Guide

Example: The following invokes the echo shell command.

//STDPARM DD *
SH echo "Hello, world!"
/*

Example: Consider the following shell script called myscript.sh. This shell script writes to stdout the
first three arguments that are passed to it.

#!/bin/sh
#Write arguments 1 through 3 to stdout
echo $1
echo $2
echo $3

The following is one way to define STDPARM to run the script:

//STDPARM DD *
SH /myscript.sh AAAA BBBB CCCC
/*

Here is another way, placing the arguments on separate lines:

//STDPARM DD *
SH /myscript.sh AAAA
BBBB
CCCC
/*

Result: Both of these STDPARM definitions produce the following output:

AAAA
BBBB
CCCC

• SVC 99 dynamic allocation, if you are running BPXBATCH from a program

For more information about defining STDPARM for BPXBATCH, see the detailed discussion about using
BPXBATCH z/OS UNIX System Services Command Reference.

Invoking BPXBATCH in a batch job
You can create a batch job that invokes BPXBATCH to run a z/OS UNIX shell command or executable file.

The JCL to invoke BPXBATCH looks like this:

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,PARM='SH|PGM program_name [arg1...argN]'

where:

• When SH is specified, program_name is the name of a shell command or a file containing a shell script.
SH is the default; therefore, you can omit the PARM= and use STDIN to define the name of the shell
script to be invoked. BPXBATCH invokes the login program to run the shell as a login shell. BPXBATCH
always runs the shell found in the user's RACF OMVS Segment.

• When PGM is specified, program_name is the name of an executable file that is stored in a z/OS UNIX
file. Inadvertent use of a shell script with PGM may result in a process that will not end as expected, and
will require use of the kill -9 pid command to force termination.

• You can supply optional arguments, arg1...argN, to program_name. For SH, the entire string after the SH
is passed to the login shell without further parsing. For PGM, the arguments are broken at blanks and
passed separately. You cannot use quotes in the parameter to pass arguments that contain blanks.

• You can omit the PARM= and, instead, place the parameter data in a file or data set defined by
STDPARM.

Using z/OS UNIX from batch, TSO/E, and ISPF 151

In the job, you can supply DD statements to define any of the resources discussed previously using the
following ddnames:
DDname

Description
STDIN

Standard input (see “Defining standard input, output, and error streams for BPXBATCH” on page 146)
STDOUT

Standard output (see “Defining standard input, output, and error streams for BPXBATCH” on page
146)

STDERR
Standard error (see “Defining standard input, output, and error streams for BPXBATCH” on page 146)

STDENV
Environment variable definitions (see “Passing environment variables to BPXBATCH” on page 147)

STDPARM
BPXBATCH parameter data (see “Passing parameter data to BPXBATCH” on page 149)

Note:

1. If you specify data sets in a STEPLIB DD statement, all the data sets should be cataloged.
2. UNIT= and VOL=SER= parameters are not propagated to the process that is being executed by

BPXBATCH unless the process is run locally by BPXBATCH via the setting of the _BPX_SHAREAS and
_BPX_BATCH_SPAWN environment variables: _BPX_SHAREAS=YES and _BPX_BATCH_SPAWN=YES.

3. If the job needs to run with a group other than your default group, you need to code GROUP=grpname
on the job card to specify the group your job needs to run under. For BPXBATCH, the group needs to
have an OMVS segment and a GID defined for it.

4. If your job requires a REGION size greater than the default on your system, you may receive this abend
code:

ABEND 4093 reason code 0000001c

To fix this, use a larger REGION size.

Example: The following invokes BPXBATCH with a region size of 8 M:

//SHELLCMD EXEC PGM=BPXBATCH,REGION=8M,PARM='SH shell_command'

Example: Running a shell script in batch

You can use BPXBATCH to run a shell script through batch and redirect the output and error messages to
z/OS UNIX files or MVS data sets. Because the default is PARM='SH', the PARM= is not specified in the
following example. The shell script associated with the STDIN ddname is invoked. You can allocate
STDIN, STDOUT, and STDERR as z/OS UNIX files, using the PATH operand on the DD statements. You can
also allocate STDOUT and STDERR as MVS data sets.

Example: User TURBO runs a shell script in batch, as follows:

• The STDIN ddname defines a shell script to be invoked, /u/turbo/bin/myscript.sh.
• STDOUT defines a file to which to write the standard output, /u/turbo/bin/mystd.out.
• STDERR defines a file to which to write standard error messages, /u/turbo/bin/mystd.err.

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M
//STDIN DD PATH='/u/turbo/bin/myscript.sh',PATHOPTS=(ORDONLY)
//STDOUT DD PATH='/u/turbo/bin/mystd.out',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/turbo/bin/mystd.err',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

152 z/OS: UNIX System Services User's Guide

Example: The following JCL is similar to the previous example and produces equivalent results but uses
the PARM= string to specify the shell script to be run:

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M,
// PARM='SH /u/turbo/bin/myscript.sh'
//STDOUT DD PATH='/u/turbo/bin/mystd.out',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/turbo/bin/mystd.err',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

Example: Running a shell command in batch

In the following example, BPXBATCH runs the shell command compress to compress the file /usr/lib/
junk. To start the next JCL job step before the compress command completes, the parameter string is
specified as:

SH nohup compress /usr/lib/junk & sleep 1

If, instead, the parameter string is specified as:

SH compress /usr/lib/junk

the job step waits for the compress shell command to end. For short-running commands, this is fine.

For long-running commands, however, where you want to use BPXBATCH to start a shell command in the
background and not wait for completion, you must specify the parameter string like this:

SH nohup command args & sleep 1

SH starts a login shell to parse and run the command. The login shell parses the &, signifying that the
command is to run asynchronously (in the background), and forks a child process to run the nohup
command. In the child process, the nohup shell command (which takes another command as an
argument) prevents the process from being terminated when the login shell returns to BPXBATCH.

In parallel with the nohup processing, the login shell runs the sleep command. Running the sleep
command delays the login shell from returning to BPXBATCH until the child process has had enough time
(1 second) to protect itself from being terminated. The login shell returns to BPXBATCH, while the child
process continues to run the compress command.

Example: User TURBO runs the compress shell command in batch, as follows:

• STDPARM defines an in-stream data set containing the parameter string.
• STDERR defines a file to which to write error messages, /u/turbo/bin/mystd.err.
• The STDIN and STDOUT files default to /dev/null.
• The STEPLIB is propagated for the execution of the shell and for any processes created by the shell.

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//STDERR DD PATH='/u/turbo/bin/mystd.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDPARM DD *
SH nohup compress /usr/lib/junk & sleep 1
/*

Example: The following JCL is similar to the previous example and produces equivalent results but uses
PARM= to specify the parameter string:

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M,
// PARM='SH nohup compress /usr/lib/junk & sleep 1'
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//STDERR DD PATH='/u/turbo/bin/mystd.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Using z/OS UNIX from batch, TSO/E, and ISPF 153

Example: Running a z/OS UNIX executable file or REXX exec in batch

You can also use BPXBATCH to run a z/OS UNIX executable file or REXX exec through MVS batch and
redirect the output and error messages to z/OS UNIX files or MVS data sets.

Example: User JAYMC runs an executable file in batch, as follows:

• The program name to be run is /u/jaymc/bin/xparse1.
• STDOUT is to be written to the file /u/jaymc/bin/mystd.out.
• STDERR is to be written to the file /u/jaymc/bin/mystd.err.
• STDIN defaults to /dev/null.

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=100M,
// PARM='PGM /u/jaymc/bin/xparse1'
//STEPLIB DD DSN=ISFSHR.JAYMC.ISFLOAD,DISP=SHR
//STDOUT DD PATH='/u/jaymc/bin/mystd.out',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/jaymc/bin/mystd.err',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

Example: This example is very similar to the previous one, except that STDOUT and STDERR are directed
to members of an existing PDSE. If you wish to use two members of the same partitioned data set for
STDOUT and STDERR output, then you must use a PDSE (not a PDS).

• The program name to be run is /u/jaymc/bin/xparse1.
• STDOUT is to be written to the PDSE member JAYMC.MYSTDLIB(XP1OUT).
• STDERR is to be written to the PDSE member JAYMC.MYSTDLIB(XP1ERR).
• STDIN defaults to /dev/null.

//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=100M,
// PARM='PGM /u/jaymc/bin/xparse1'
//STEPLIB DD DSN=ISFSHR.JAYMC.ISFLOAD,DISP=SHR
//STDOUT DD DSN=JAYMC.MYSTDLIB(XP1OUT),DISP=MOD
//STDERR DD DSN=JAYMC.MYSTDLIB(XP1ERR),DISP=MOD

Invoking BPXBATCH from the TSO/E environment
You can use BPXBATCH to run a z/OS UNIX shell command, shell script, or executable file from the TSO/E
environment. (For shell commands, however, it may be even easier to use the OSHELL exec, which
invokes BPXBATCH. See “OSHELL: Running a shell command from the TSO/E READY prompt” on page
155.)

You can invoke BPXBATCH under TSO/E like this:

BPXBATCH SH|PGM program_name [arg1...argN]

where:

• When SH is specified, program_name is the name of a shell command or a file containing a shell script.
SH starts a login shell which processes your .profile before running a shell command or shell script.
SH is the default; therefore, you can allocate a file containing a shell script to the STDIN ddname, invoke
BPXBATCH without any parameters, and the shell script will be invoked.

• When PGM is specified, program_name is the name of an executable file that is stored in a z/OS UNIX
file. Inadvertent use of a shell script with PGM may result in a process that will not end as expected, and
will require use of the kill -9 pid command to force termination.

• You can supply optional arguments, arg1...argN, to program_name.
• You can invoke BPXBATCH without any parameters on the command line and, instead, place the

parameter data in a file or data set defined by STDPARM.

154 z/OS: UNIX System Services User's Guide

Prior to invoking BPXBATCH, you can allocate any of the resources discussed previously, using the TSO/E
ALLOCATE command with the following ddnames:
DDname

Description
STDIN

Standard input (see “Defining standard input, output, and error streams for BPXBATCH” on page 146)
STDOUT

Standard output (see “Defining standard input, output, and error streams for BPXBATCH” on page
146)

STDERR
Standard error (see “Defining standard input, output, and error streams for BPXBATCH” on page 146)

STDENV
Environment variable definitions (see “Passing environment variables to BPXBATCH” on page 147)

STDPARM
BPXBATCH parameter data (see “Passing parameter data to BPXBATCH” on page 149)

OSHELL: Running a shell command from the TSO/E READY prompt

The OSHELL REXX exec, shipped in SYS1.SBPXEXEC, invokes BPXBATCH to run non-interactive shell
commands from the TSO/E READY prompt. The output is displayed in your TSO/E session.

OSHELL usage notes: Note that:

1. With OSHELL, you cannot use a shell command with an & (ampersand) to run it in the background.
2. OSHELL cannot be used to invoke an interactive shell command.
3. OSHELL creates a temporary file in the /tmp directory. The name of the temporary file includes the

time, to avoid naming conflicts (for example, /tmp/userid1.12:33:32.461279.IBM). The file is deleted
when OSHELL completes.

OSHELL examples: For example:

To delete the file dbtest.c, user TURBO would enter at the TSO/E READY prompt:

oshell rm -r /u/turbo/testdir/dbtest.c

To display the amount of free space in your file system, you could enter:

oshell df -P

To display information on all accessible processes, you could enter:

oshell ps -ej

Figure 10 on page 156 shows how OSHELL is coded.

Using z/OS UNIX from batch, TSO/E, and ISPF 155

/* REXX */
parse arg shellcmd
username =,
TRANSLATE(userid(),'abcdefghijklmnopqrstuvwxyz','ABCDEFGHIJKLMNOPQRSTUVWXYZ')
/**/
/* Free STDERR just in case it was left allocated */
/**/
/* */
msgs = msg('OFF')
"FREE DDNAME(STDERR)"
/**/
"ALLOCATE FILE(STDOUT) PATH('/tmp/"username"."time('L')".IBM') ",
"PATHOPTS(OWRONLY,OCREAT,OEXCL,OTRUNC) PATHMODE(SIRWXU)",
"PATHDISP(DELETE,DELETE)"
IF RC ¬= 0 Then
 DO
 "FREE DDNAME(STDOUT)"
 "ALLOCATE FILE(STDOUT) PATH('/tmp/"username"."time('L')".IBM') ",
 "PATHOPTS(OWRONLY,OCREAT,OEXCL,OTRUNC) PATHMODE(SIRWXU)",
 "PATHDISP(DELETE,DELETE)"
 IF RC ¬= 0 Then
 DO
 msgs = msg(msgs)
 /* Allocate must have failed */
 Say ' This REXX exec failed to allocate STDOUT.'
 Say ' This REXX exec did not run shell command ' shellcmd
 RETURN
 END
 END
msgs = msg(msgs)

"BPXBATCH SH "shellcmd

IF RC ¬= 0 Then
 DO
 Say ' RC = ' RC
 Say ' '
 END
IF RC > 255 Then
 DO
 Say ' Exit Status = ' RC/256
 Say ' '
 END
IF (RC ¬= 254) & (RC ¬= 255) THEN
 DO
 "ALLOCATE FILE(out1) DA(*) LRECL(255) RECFM(F) REUSE"
 "OCOPY indd(STDOUT) outdd(out1) TEXT PATHOPTS(OVERRIDE)"
 "FREE DDNAME(out1)"
 END
"FREE DDNAME(STDOUT)"

Figure 10: The OSHELL REXX exec

Using TSO/E REXX for z/OS UNIX processing
You can use a set of z/OS UNIX extensions to TSO/E REXX—host commands and functions—to access
kernel callable services. The z/OS UNIX extensions, called syscall commands, have names that
correspond to the names of the callable services that they invoke—for example, access, chmod, and
chown.

You can run a REXX program with z/OS UNIX extensions from MVS, TSO/E, the shell, or a C program. The
exec is not portable to an operating system that does not have z/OS UNIX installed.

For more information about the REXX extensions that call z/OS UNIX services, see z/OS Using REXX and
z/OS UNIX System Services.

156 z/OS: UNIX System Services User's Guide

Using the ISPF shell
With the ISPF shell (ISHELL), a user or systems programmer can use ISPF dialogs instead of shell
commands to perform many tasks, especially those related to file systems and files. An ordinary user can
use the ISPF shell to work with:

• Directories
• Regular files
• FIFO special files
• Symbolic links, including external links

You can also run shell commands, REXX programs, and C programs from the ISPF shell. The ISPF shell
can only direct stdout and stderr to a file in your file system, not to your terminal. If it has any contents,
the file is displayed when the command or program completes.

Invoking the ISPF shell
You can invoke the ISPF shell in one of the following ways:

• Type the TSO/E command: ISHELL [-d] [pathname]

See “Entering a TSO/E command” on page 185 for information about entering TSO/E commands in
TSO/E, the shell, and ISPF.

• Select the ISPF shell from the ISPF menu, if a menu option is installed.

The optional pathname parameter specifies the initial path name that you want to appear on the ISHELL
main panel.

Example: The following command invokes the ISPF shell and supplies the path name /tmp/ on the
ISHELL main panel:

ishell /tmp/

Guidelines: When invoking the ISPF shell, follow these guidelines:

1. ISHELL can be invoked with the option –d, which prevents ISHELL from suppressing ISPF severe
dialog errors. This will cause ISHELL to terminate on errors. This option should only be used at the
direction of an IBM technical support representative.

2. The environment variable BPXWISHTZ can be set to a time zone value to have ISHELL use a local time
zone that is different than your TZ setting. BPXWISHTZ must be specified in /etc/profile or in .profile.
For example, if the TZ setting does not specify GMT, to allow ISHELL users to return to GMT add the
following line to etc/profile or .profile:

export BPXWISHTZ=GMT

For more information about using the SMFPRMxx parmlib member to specify timeouts, see z/OS UNIX
System Services Planning.

3. Since ISHELL contains code to run the TSO commands OGET and OPUT, these commands should not
be included in the PLATCMD area of any IKTSOxx member in effect. Doing so will result in a delay in
exiting ISHELL, especially if a copy operation has been performed in the ISHELL session. In general,
none of the z/OS UNIX TSO commands should be listed as PLATCMD entries. For more information, see
z/OS UNIX System Services Planning.

Working in the ISPF shell
Figure 11 on page 158 is the main panel, which you see when you invoke the ISPF shell. The action bar
has the following choices:

• File
• Directory

Using z/OS UNIX from batch, TSO/E, and ISPF 157

• Special file
• Tools
• File systems
• Options
• Setup
• Help

When you select one of these choices, a pull-down panel displays a list of actions.

 File Directory Special_file Tools File_systems Options Setup Help
 --
 UNIX System Services ISPF Shell

 Enter a pathname and do one of these:

 - Press Enter.
 - Select an action bar choice.
 - Specify an action code or command on the command line.

 Return to this panel to work with a different pathname.
 More: +
 /__

 EUID=nnnn

Command ===> __
 F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel

Figure 11: ISPF shell: The main panel

In the center of the panel, you see four lines. Here you can type the path name of a file (a directory is a
type of file) that you want to work with. It can be the name of an existing file or a new file that you are
creating.

In the lower part of the panel, you see a command line. Here you can type an action code, a one-character
code that specifies an action that you want to perform on the path name you are working with. For
example, D is the action code for "delete" (To familiarize yourself with the action codes, press <F1> on the
main panel. On the help panel that is displayed, position your cursor under the highlighted words action
code and press <F1>.)

Work in the ISPF shell is a two-step sequence:

1. Select an object—the path name of a new or existing file.
2. Select an action for that object.

For more about ISPF

For more information about ISPF, see z/OS ISPF User's Guide Vol I.

Using the online help facility
In the ISPF shell, you can get help information for:

• Panels
• Fields on panels
• Highlighted words on panels

158 z/OS: UNIX System Services User's Guide

Position your cursor on one of those locations and press <F1>.

For more information on the online help facility when you begin working in the ISPF shell, select the Help
choice on the action bar and read the information there.

Using z/OS UNIX from batch, TSO/E, and ISPF 159

160 z/OS: UNIX System Services User's Guide

Chapter 12. Performance: Running executable files

Note: This information is directed toward users of the z/OS shell. Most examples pertain to the z/OS shell
and not to the tcsh shell.

A process is a collection of threads that execute within an address space, along with the required system
resources. A user's login shell is one example of a process.

• The OMVS command creates two processes per login: a process to control the terminal and a process
for the login shell.

• rlogin and telnet logins each create two processes: one to control the socket connection to the user,
another for the login shell.

• Communications Server logins require only one process per login. Consequently, there is no method for
requesting a shared address space for the Communications Server login shell.

Most utilities invoked from the shell command line run in new processes that the shell creates.

There is a system-wide limit on:

• The number of z/OS UNIX processes across the system
• The number of z/OS UNIX processes per user

For a discussion of these limits, see the section on defining system limits in z/OS UNIX System Services
Planning.

The shell, and other z/OS UNIX commands and daemons, can assign multiple processes to the same MVS
address space; this is called a shared address space. Using a shared address space offers these
advantages:

• A new process in the same address space can be started more quickly than a new process in another
address space.

• A new process in the same address space requires fewer system resources (storage, for example) than
a new process in another address space.

For rlogin, the system administrator must update /usr/sbin/inetd.conf by adding -m to the rlogind
entry to enabled shared address space. When -m is added, the socket connection process and the login
shell process share the same address space.

For the OMVS command, use the SHAREAS keyword to enable shared address space. When the SHAREAS
keyword is used, the login shell process is nested in the user's TSO address space. Any other login shells
started with the OMVS OPEN subcommand are also nested in the user's TSO address space. (With
NOSHAREAS, other login shells started with the OMVS OPEN subcommand will each consume another
address space.)

To enable shared address space for the shell, issue the command

export _BPX_SHAREAS=YES

interactively, or place it in your $HOME/.profile. All simple commands (commands that are run in the
foreground and not in a pipeline) will then run in processes nested in the shell's address space. If the
_BPX_SHAREAS variable is not set, or if it is not set to the value YES, the shell creates all processes in
separate address spaces. No matter how the shell is started (with or without shared address space
enabled), you must set _BPX_SHAREAS=YES if processes started by the shell itself are to run in
processes nested in the shell's address space.

User applications can also use shared address spaces. See spawn (BPX1SPN, BPX4SPN) — Spawn a
process and attach_exec (BPX1ATX, BPX4ATX) — Attach a z/OS UNIX program in z/OS UNIX System
Services Programming: Assembler Callable Services Reference for details.

© Copyright IBM Corp. 1996, 2018 161

Some processes cannot execute correctly in a shared address space. For example, if a process needs to
reserve z/OS system resources that are common to all processes in a z/OS address space, it must run by
itself. If two processes using the same resource attempt to execute concurrently in the same address
space, they will compete for these resources, causing at least one of them to fail. When a potential
storage shortage is detected, the new processes are created in their own address spaces, even if
_BPX_SHAREAS=YES is present in the invoker's environment. For more details about these restrictions,
see the descriptions of the spawn() function and the spawn (BPX1SPN, BPX4SPN) — Spawn a process
callable service.

Improving shell script performance
You might be able to improve shell script performance by setting the _BPX_SPAWN_SCRIPT environment
variable to a value of YES. However, when _BPX_SPAWN_SCRIPT=YES, the behavior will not conform
completely to the XPG4 Commands & Utilities specification.

See “Improving the performance of shell scripts” on page 40 for more information.

162 z/OS: UNIX System Services User's Guide

Chapter 13. Communicating with other users

You can communicate only with users in the same environment you are working in. For example, if you are
working in the TSO/E environment, you cannot use MVS facilities to send a message to a user working in
the shell.

Shell users who want to exchange messages with other shell users at the same system can use shell
commands. Other users may prefer to use TSO/E facilities, in order to be able to exchange messages with
all TSO/E users, not just those using the shell.

Within the shell, you can send and receive messages using these shell commands:

• mailx
• mail
• write
• talk
• wall

Alternatively, you can switch into your TSO/E session and send messages to any TSO/E user by using
TSO/E facilities, through the OFFICE option of the Information Center Facility (ICF), if it is installed on
your system, or through TSO/E commands. You can also receive messages using TSO/E.

If your system has Transmission Control Protocol/Internet Protocol (TCP/IP) or other network
management facilities installed, you can log in to the TCP/IP network and send messages to users at
other systems.

If your system has UUCP (UNIX-to-UNIX Copy Program) installed and set up, you can use this facility to
send files to, or run commands or custom applications at, other sites in the UUCP network.

Using mailx to send and receive mail
You can use the mailx command to send a message to a system-specified mail file. When the shell user
receiving the message is ready to read messages, he or she can use mailx to see what messages have
arrived and read them.

Administrators and users can customize the behavior of mailx in a number of ways, by selecting
variables and setting them in files named /etc/mailx.rc and $HOME/mail.rc. Some variables apply
for the duration of any session; others can be set or reset within a session.

The systems programmer can set up a list of variables (using the set command) in the /etc/mailx.rc
file. You can use these values as a default, or you can set up a $HOME/mail.rc file that sets these
variables for your personal use. These variables are described in the mailx command description in z/OS
UNIX System Services Command Reference.

You can reset certain variables during a session, or, when entering mailx, specify that the variables in
the /etc/mailx.rc file are not to be used.

Steps for sending mail to another user
Before you begin: You need to know that you can send a message to one or more users at a time. The
following example is a message sent to several users. The word in italics is output by mailx itself.

 mailx macneil
Subject: Reminder
 Our work group meets today at 10:30.
 Let's get together in the library.
 ~c smitha emilig fabish
 ~.

© Copyright IBM Corp. 1996, 2018 163

On the first line, the message is addressed just to macneil. The ~c line adds people who will receive
copies of the message.

The ~. line identifies the end of the message and indicates to mailx that you are ready to send it. After
you type that line and press <Enter>, the message is sent.

Perform the following steps to send mail to another user

1. Type mailx name, where name is a login name.

2. The system prompts you for a Subject. You can type a word or phrase and press <Enter>.

3. Start typing the message. At the end of each line, press <Enter>. In the preceding example, you would

press <Enter> after Reminder, 10:30., library., and fabish.

4. To copy other people on the note, type ~c before their login names.

5. To end the message and transmit it, type ~. and press <Enter>.

You know you are done when the system displays an EOT message.

Sending mail to a distribution list
You can send the same message to multiple users at the same time by using a distribution list.

If you use mailx to send a message, you can specify the address of each z/OS UNIX user you want to
receive the message. The simplest address is the TSO/E user ID.

Example: To send a message to pfeif, lowell, eliza, and fabish, issue:

mailx pfeif lowell eliza fabish

To send a message to a list of people, you can specify an address alias that contains a list of login names.

Example: To set up an alias for the test team, issue:

alias test pfunt lulu detsch naga

Result: When you send a message to the address alias test, it will go to all the login names you specified
on the alias command.

Aliases that are entered interactively remain in effect only for the current session. If you want to make the
address alias permanent, put the alias command in your .mailrc startup file.

Sending a message to an MVS operator
You can use the logger shell command to send a message to an MVS operator.

Example: To send a message to an MVS operator:

logger -d1 Is the tape I requested here yet?

Result: A message is sent to a console with the route code 1.

Receiving mail from other users
The simplest way to read incoming messages is to enter the command mailx. This starts an interactive
session that lets you read your mail and perform other actions, such as display new messages and delete
old ones. If you do not have any mail, you will get a message telling you so.

164 z/OS: UNIX System Services User's Guide

When you have mail, the mail program shows you a list of messages similar to this one:

mailx xxxxxxx Type ? for Help.
"/usr/mail/SMITHA/...": 3 messages 3 new
>N 1 CLIFLWR Thu Jul 15 14:28 6/93 testing
>N 2 HOMEBRW Thu Jul 15 15:03 5/81 lunch plans
>N 3 ELVIS Thu Jul 15 16:17 6/95 softball
?

The first line is the mailx program banner; xxxxxxx is information about the version of mailx. As
indicated, you can type ? to see a help panel. The second line displays the name of the mailbox being
used, /usr/mail/SMITHA/, followed by the number of messages in the mailbox, and their status. Then,
you see a list of three messages:

• Number 1 was sent by CLIFLWR and has the subject "testing". It was sent on July 15 at 2:28 PM, and
contains 6 lines and 93 characters.

• Number 2 was sent by HOMEBRW and has the subject "lunch plans". It was sent on July 15 at 3:03 PM,
and contains 5 lines and 81 characters.

• Number 3 was sent by ELVIS and has the subject "softball". It was sent on July 15 at 4:17 PM, and
contains 6 lines and 95 characters.

The user names are all displayed in uppercase.

The question mark (?) is the mail program prompt; it indicates that you can enter mailx subcommands
now. Try the subcommand n (next message) to read the messages in sequence:

? n
Message 1:
From CLIFLWR Thu Jul 15 14:28
To: SMITHA
Subject: testing

I'm setting up a meeting to test the toolkit
on Monday the 19th at 10AM.
Let me know if you can make it.
?

The question mark (?) prompt appears after the displayed message. You can also enter the n
subcommand with a number to specify a particular message; for example, n 3 displays the message
about softball. Now you can choose what to do with the message: reply to it, save it, or delete it.

Replying to mail
At the question mark (?) prompt, you can use the R (reply to sender) subcommand to reply to a particular
message. This is an uppercase R: it differs from the r subcommand, which sends the reply to everyone
who sent and received the message. When you give the R subcommand, follow it with the message
number. For example:

? R 1
To: cliflwr
Subject: Re: testing

Yes, I can make the meeting. where ?
 ~.
EOT

The EOT indicates that your reply has been sent.

Saving and deleting mail
If you exit mail without specifically deleting or saving your messages, the system saves those messages.

To save a message, use the s subcommand and give the name of the file you want to save the message in.

Communicating with other users 165

Example: To save the file named climail:

s climail

Result: If this is an existing file, the message is appended to it. If the file does not exist, it is created.

To delete a message, use the d subcommand and give the number of the message you want to delete:

? d 1
?

The mail program deletes message number 1 and returns another ? prompt.

Ending the mailx program
To exit from mailx, use the q (quit) subcommand:

? q
$

The shell prompt indicates that you have left mail and can enter shell commands again.

For more information on mailx, see the mailx command description in z/OS UNIX System Services
Command Reference.

Using write to send a message or a file
The write command lets you send a message directly to someone else who is logged on to the system.
To determine who is logged on, use the who command. The who command displays information about
who is logged on in this form:

BUBBA ttyp0002 Feb 8 09:49

where BUBBA is a login name, ttyp0002 is the terminal, and Feb 8 09:49 is the login time.

The typical format of the write command is:

write user_name

However, if a user is logged in more than once, you can specify terminal (in the ttyp form that who
returns) rather than user_name.

Sending a message: An example
Here is an example of how to send a message, using max as the sender and bubba as the recipient:

write bubba

When max sends a message to bubba, bubba receives a message like this:

Message from max (ttyp002) [Feb 8 15:04] …

After the system establishes the connection to bubba, it sends two alert characters (usually a beeping
sound) to max's terminal to indicate that it is ready to send a message. max can then type a message,
which appears on bubba's terminal. If a message is more than one line, each time you press <Enter> a
line is sent to bubba's terminal.

Ending a message
To end a message, enter <EscChar-D> for end-of-file or <EscChar-C> for an interrupt. When write
receives an end-of-message indicator, it displays an EOF message on the other user's screen and breaks
the connection.

166 z/OS: UNIX System Services User's Guide

When your message is completed, the other user can reply to your message with

write your_user_name

However, if both of you are trying to write on each other's terminal at the same time, the messages may
get interleaved on your screens, making them difficult to read. For two-way conversations, use talk
instead of write. For more information about talk, see “Using talk for an online conversation” on page
167.

Sending a file
You can add the output of a command to a message that you are writing. To do this, start a line with an
exclamation mark (!) and put a standard shell command on the rest of that line. write calls your shell to
execute the command, and sends the standard output (stdout) from the command to the other user. The
other user does not see the command itself or any input to the command. For example, you might write:

Here is what my file contains:
!cat file1

The contents of file1 are displayed on the other user's screen.

Using talk for an online conversation
talk lets you start up a two-way conversation with someone else logged in to the system. However, talk
is available only if you access the shell with rlogin or telnet or the Communications Server, because it
requires raw mode.

The typical format of the talk command is:

talk user_name

However, if a user is logged in more than once, you can specify terminal (in the form ttyp that who
returns) rather than user_name.

Beginning a conversation: An example
Here is an example of how to begin a conversation with talk, using max as the person starting a
conversation with bubba. Here max begins by typing:

talk bubba

bubba receives a message like this:

Message from max.
talk: connection requested by max
talk: respond with: talk max

To set up the two-way connection, bubba must enter:

talk max

After this connection has been established, the two can type simultaneously.

Viewing the conversation
talk displays incoming messages from the other person in one part of the screen and your outgoing
messages in another part of the screen.

Some terminals may not be able to split the screen into parts in this way. Depending on the terminal type,
talk may try to simulate this effect. However, it may not be possible for both users to enter messages
simultaneously.

Communicating with other users 167

Using wall to broadcast messages
A superuser can use the wall command to send a message to all logged in shell users:

wall [message]

If the message is omitted from the command line, the user will receive two beeps as a prompt to enter the
message. You input the message, pressing enter after each line, and when done inputting the entire
message, enter end-of-file or an interrupt (typically, <EscChar-D> for end-of-file or <EscChar-C> for an
interrupt).

The user of wall should be a superuser. This ensures that the user is permitted to write to all the users
that are logged on. If a user who is not a superuser attempts to use wall to broadcast a message, some
writes will fail and those users will not receive the message.

Users who are sent a broadcast message will receive a beep announcing the message, and a message in
the form:

Broadcast Message from SWER@AQFT (ttyp0006) at 10:43:54 (EDT5EST) ...

This is the text of the message line1
This is line2

For more information on the wall command, see the wall command description in z/OS UNIX System
Services Command Reference.

Controlling messages and online conversations
You can use the mesg command to control whether other users can send messages to your terminal with
talk, write, or similar commands.

To let other people send you messages, issue:

mesg y

To tell the system not to let other people send you messages, issue:

mesg n

To display the current setting without changing it, issue:

mesg

Using the UUCP network
If your system administrator has UUCP (UNIX-to-UNIX Copy Program) set up to communicate with
remote sites, you can use this facility to send or retrieve files, or to run commands or custom applications
at other sites in the UUCP network. To send or retrieve files from remote sites, use the uucp command;
this causes a file transfer request to be queued. Depending on how your system is set up, a file transfer
request may be processed immediately or later at a scheduled time.

UUCP provides the uucp command, which schedules files to be exchanged with other UUCP systems, and
the uux command, which schedules commands to be executed by other UUCP systems. However, the
uucp and uux commands do not cause any files to be exchanged or commands to be executed. For this,
UUCP provides two daemons called uucico and uuxqt, which establish communication sessions,
transfer data, and execute commands according to the requests scheduled by uucp and uux.

The commands that you use with UUCP are:

168 z/OS: UNIX System Services User's Guide

uucp
Copy files between remote systems

uuname
Display a list of UUCP systems

uupick
Manage files sent to you via uuto

uustat
Display the status of pending UUCP transfers

uuto
Copy files to users on remote systems

uux
Request command execution on remote systems

Tip: uucp, uuto, and uupick do not convert file data to or from EBCDIC. The sending and/or receiving
user must convert file data if two systems have different codesets. You can use the iconv command to do
this.

Transferring a file to a remote site
To transfer a file to a remote site, use the uucp command or the uuto command.

Using uucp to transfer files

uucp automatically handles text and binary files. When a file is transferred by uucp to another site, it is
put in the public UUCP directory—by default, this is /usr/spool/uucppublic.

1. You need to know the name of the remote site. To list the remote sites that have been configured, type:

uuname

The sites are listed, one per line.
2. Copy the file to the other site.

To make file transfers easier, you can use a special character in pathnames for the public UUCP
directory. When tilde (~) is written as the first directory in a destination path name, the ~/ stands for
the public UUCP directory. You can specify the public UUCP directory with the pathname ~/.

For example, to copy the file memo1.pay in your current directory to the public directory on the site
named north, type:

uucp memo1.pay north!~/memo1.pay

File transfers may not get processed immediately. If there is any chance that the file that is to be sent
will not be available later, use the -C option on the uucp command to immediately copy the file to the
uucp spool directory. This ensures that the file is available later when the file transfer occurs.

Using uuto to transfer files

uuto is a simplified method of invoking uucp, and it also handles text and binary files automatically.
When a file is transferred by uuto to another site, it is put in the receive/usr subdirectory of the public
UUCP directory. Within the receive subdirectory, each user on the local system has a subdirectory. For
example, a file for user stiert would be transferred to /usr/spool/uucppublic/receive/stiert.

1. You need to know the name of the remote site. To list the remote sites that have been configured, type:

uuname

The sites are listed, one per line.

Communicating with other users 169

2. Copy the file to the other site. For example, to copy the file memo1.pay in your current directory to the
public directory on the site named north, type:

uuto memo1.pay north!nuucp

The recipient is notified by mail when the file arrives. To get the file, the recipient should use the
uupick command. See “Working with your files in the public directory” on page 171 for information
on how to use the uupick command.

Transferring multiple files to a remote site
You can use uucp to transfer more than one file, specifying the files by name or by using wildcards. To
send more than one file, you must specify a directory as the destination, not a file name. To do this, end
the destination pathname with a slash (/).

For example, to send the files jan.wks, feb.wks, mar.wks, and memo1.txt, to the directory receive at the
north site, type:

uucp *.wks memo1.txt north!~/receive/

The trailing slash (/) shows that receive is a directory.

You can send an entire directory, by specifying the contents of the directory with a wildcard.

Transferring a file to the local public directory
You may want to put a file in your local public directory so that others can access it there. To specify the
public directory in a local pathname, put single quotation marks around the pathname so that the shell
does not treat the tilde as your home directory. (For more information on how the shell interprets a tilde in
file names, see “Characters used in file names” on page 71.)

Example: To copy that file to your own UUCP public directory, issue:

uucp memo1.pay '~/memo1.pay'

Notification of transfer
If you want to be certain that a file has been transferred, or if you want someone at the remote site to
know that the file has arrived, you can use the -m and -n options on the uucp command, or the -m option
on the uuto command.

• With uucp -m or uuto -m, as soon as the file is successfully transferred, you receive a mail message.
You can use mailx to read the message. The first line describes the file transfer request, and the
second line describes the result. For example, it might look like this:

REQUEST: home!/usr/spool/uucppublic/memo1.txt north!/usr/spool/uucppublic/memo1.txt
(SYSTEM north) copy successful

• With uucp -n name, if you are transferring a file to a remote site, you can specify the login name of the
person at the remote site to be notified when the file is transferred. That person can read the
notification message using mailx.

Permissions
Each site in a UUCP network has a Permissions file that is used to control the access that remote systems
have to data and programs on the local system. This file is used to specify, among other options, the areas
in the file system that a remote system can read or write from, the commands that the remote system can
run on the local system, and a different public directory than the default. Those options are specified as:
READ

Indicates which directories can be read. By default, this is the home directory of user uucp (/usr/
spool/uucppublic).

170 z/OS: UNIX System Services User's Guide

WRITE
Indicates which directories uucico can write to. By default, this is /usr/spool/uucppublic, the
home directory of user uucp.

NOREAD
Indicates that files in the specified directories cannot be read. If a directory is specified by both READ
and NOREAD, files in that directory cannot be read. The public directory can always be read (even if
specified on NOREAD).

NOWRITE
Indicates that files in the specified directories cannot be written to. If a directory is specified by both
WRITE and NOWRITE, files in that directory cannot be written to. The public directory can always be
written to (even if specified on NOWRITE).

PUBDIR
Indicates the public directory. By default, this is the home directory of user uucp (/usr/spool/
uucppublic).

COMMANDS
Indicates the commands that the remote system can execute on your system. If more than one
command is specified, the command names are separated with a colon (:). For example,
COMMANDS=uucp:ls. If all commands are prohibited, the COMMANDS option is not used.

For a full description of all the Permissions file options, see the permissions file in z/OS UNIX System
Services Planning.

Transferring a file from a remote site
To copy a file from a remote site, your site must have read permissions on the file. Normally your site
would have read permissions only on the public UUCP directory and its subdirectories.

For example, say you want to copy the program pages from programs, a subdirectory of the remote site's
public UUCP directory, to your public UUCP directory.

To retrieve the file, you would enter this command:

uucp south!~/programs/pages '~/pages'

where south is the remote site.

For more information about the uucp command, see z/OS UNIX System Services Command Reference.

Checking a file's transfer status
To check the status of pending transfer requests, use the uustat command. You can specify options to
display the status of transfers for a particular job ID or user ID.

To display completed file transfer attempts, use the uulog command. To see the record of completed file
transfer attempts and connections by site, type:

uulog -s site

where site is the name of the remote site.

Working with your files in the public directory
All users have read access to the UUCP public directory. When you have a file in the public directory, you
can use the cp command to copy the file or the mv command to move the file. If the sender uses the -n
option on uucp, you are notified when the file is placed in the public directory.

Files sent to you with the uuto command are automatically placed in the receive subdirectory. You can
use uupick to manage files in the receive subdirectory of the UUCP public directory. If receive is
specified as the target directory on the uucp command, you can use uupick to manage the files.

Within the receive subdirectory, each user on the local system has a subdirectory.

Communicating with other users 171

To check your public UUCP directory for files sent to you by the uuto command, type uupick. For each
file or directory found, uupick prompts you with a message and then you specify how that entry should
be handled. For example, for a file, it might display:

from south: file memo2.txt ?

In response, you could type d to delete the file, or m to move the file into your current working directory, or
m /mydir/tmp to put it in the directory /mydir/tmp.

For more information about the uupick command, see z/OS UNIX System Services Command Reference.

Running a command on a remote site
You can use the uux command to run commands on remote sites, but they cannot be interactive
commands such as vi. You must have a working UUCP connection and permission to execute commands
on the remote site.

Using a remote file as an argument

To ask south to print the file south!/schedule/january using the lp command, you would type:

uux 'south!lp' '/schedule/january'

where /schedule/january is the name of the file on south to be printed. In general, if no site is specified
on the arguments for the remote command, uux assumes the command is on the site running the
command. You must specify full pathnames for files in uux commands. As a general rule, enclose all
arguments to uux in single quotation marks to prevent the shell from interpreting them.

Using a local file as an argument

To ask south to print the local file /schedule/january using the lp command, you would type:

uux south!lp !/schedule/january

uux sends a copy of the file for printing; after the remote command has run, the copy is removed.

Using TSO/E to send or receive mail
You can use the TSO/E panel facilities or TRANSMIT and RECEIVE commands to communicate with any
TSO/E user (including z/OS UNIX users). If you use TSO/E to send a message, your correspondent must
use TSO/E to receive it.

Sending a message
You can use the TSO/E Information Center Facility (ICF), if installed, or TSO/E commands to send a
message. For example, to send a short message (with no more than 115 characters), you can switch to
TSO/E command mode and enter:

SEND 'Have to go home to take my cat to the vet' USER(alice)

You use SEND for messages to people on the same system as you.

For a longer message, or a message to someone on a different system, you could use:

TRANSMIT dallas.alice

where dallas.alice identifies the person to receive the message: dallas is the ID of the MVS system
(known as a node in the network) where the person works, and alice is the person's user ID. The system
then prompts you to enter the message.

172 z/OS: UNIX System Services User's Guide

Sending a message to a distribution list
You can use the TSO/E ICF, if installed, or the TSO/E TRANSMIT command to send a message to a
distribution list. You set up a distribution list by specifying a nickname entry in the NAMES data set that
contains a list of names or nicknames you want the message sent to.

Example: If you have set up the nickname test for a distribution list, issue:

transmit test

Result: The system displays a screen for input. Type your message and press <F3> to send it.

Sending a message to an MVS operator
To send a message to a specific MVS operator, you must know the operator's route code and specify it in
the OPERATOR operand.

Example: Issue:

SEND 'Are the tapes I wanted from the library here yet?' OPERATOR(7)

You can also send a message to a specific operator console by using the CN operand. A console name or
ID is defined at your enterprise.

Example: To send a message to the operator console named TAPELIB, issue:

send 'please send the tapes to the floor.' CN(TAPELIB)

Receiving mail from other users
How and whether you are notified when TSO/E messages are received by the system depends on how
your TSO/E system is set up:

• You may be notified when you log on or as messages arrive.
• You may have to enter a RECEIVE command periodically to see if a message has arrived.

Unless the messages are automatically displayed when you log on, you enter a RECEIVE command to see
your currently unread messages. For more information on TSO/E mail and messaging, see z/OS TSO/E
User's Guide.

Receiving messages from other systems
TSO/E users can receive messages from other systems through the TSO/E message interface. Receiving a
message from a user on another system is the same as receiving one from a user on the same system.

Communicating with other users 173

174 z/OS: UNIX System Services User's Guide

Part 2. The z/OS UNIX file system
These topics discuss tasks involved with the z/OS UNIX file system.

© Copyright IBM Corp. 1996, 2018 175

176 z/OS: UNIX System Services User's Guide

Chapter 14. An introduction to the z/OS UNIX file
system

z/OS UNIX files are organized in a hierarchy, as in a UNIX system. All files are members of a directory, and
each directory is in turn a member of another directory at a higher level in the hierarchy. The highest level
of the hierarchy is the root directory.

The root file system and mountable file systems
Taken as a whole, the file system is the entire set of directories and files, consisting of all files shipped with
the product and all those created by the systems programmer and users. The systems programmer
(superuser) defines the root file system; subsequently, a user with mount authority can mount other
mountable file systems on directories within the file hierarchy. (See the section on mounting file systems
in z/OS UNIX System Services Planning.) Altogether, the root file system and mountable file systems
comprise the file hierarchy used by shell users and applications.

After installation of z/OS, the end user's logical view of the file system is as shown in Figure 12 on page
177.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

global

Figure 12: End user's logical view of the file system

System programmers need to know that the illustration of directories in Figure 12 on page 177 is not a
true representation of file systems. The file system, as installed through ServerPac or CBPDO, consists
of /dev, /tmp, /var, and /etc symbolic links that point to the /dev, /tmp, /var, and /etc directories,
as demonstrated in Figure 13 on page 177.

bin samples SYSTEM dev tmp var etcusru lib opt

dev tmp var etclib opt samplesusrbin

Symbolic linkDirectory

Key:

global

Figure 13: Organization of the file system

© Copyright IBM Corp. 1996, 2018 177

Here SYSTEM is a data set that contains directories which are used as mount points, specifically for the /
etc, /var, /tmp, and /dev file systems. IBM requires that you mount /etc, /var, /dev, and /tmp in
separate data sets.

The z/OS shells and utilities typically impose a line orientation on the byte-oriented files. A line is a stream
of bytes terminated with a <newline> character. A line terminated by a <newline> character is sometimes
referred to as a record. So, there is a single <newline> character between every pair of adjacent records.
Text files use the <newline> character to delimit lines; binary files do not.

Several types of file systems can be mounted within the file hierarchy:

• z/OS File System (zFS): zFS is the strategic file system for z/OS UNIX and continues to be enhanced to
provide superior performance, reliability, and data integrity. zFS file systems can be mounted into the
z/OS UNIX hierarchy along with other local (or remote) file system types (for example, HFS, TFS,
AUTOMNT and NFS). Also, zFS can support access control lists (ACLs). For more information, see z/OS
Distributed File Service zFS Administration and z/OS Migration.

• Hierarchical File System (HFS): In HFS, the entire file hierarchy is a collection of hierarchical file system
data sets (HFS data sets). Each HFS data set is a mountable file system. DFSMS facilities are used to
manage an HFS data set, and DFSMS Hierarchical Storage Manager (DFSMShsm) is used to back up and
restore an HFS data set.

• Network File System (NFS): Using NFS client on z/OS UNIX System Services, you can mount a file
system, directory, or file from any system with an NFS server within your user directory. You can edit or
browse the files. For more information, see “Using the Network File System feature” on page 186 and
z/OS Network File System Guide and Reference.

• Distributed File System (DFS): DFS joins the local file systems of several file server machines, making
the files equally available to all DFS client machines. DFS allows users to access and share files stored
on a file server anywhere in the network, without having to consider the physical location of the file. For
more information, see z/OS DFSMS Using Data Sets.

• Temporary File System (TFS): The TFS is an in-memory physical file system that delivers high-speed
I/O. To take advantage of that, the systems programmer (superuser) can mount a TFS over the /tmp
directory so it can be used as a high-speed file system for temporary files. (Normally, the TFS is the file
system that is mounted instead of the HFS if the kernel is started in minimum setup mode.)

Directories
Files are grouped in a directory, which is a special kind of file consisting of the names of a set of files and
other information about them. Usually, the files in a directory are related to each other in some way. The
files listed can be thought of as being contained in that directory (although their actual locations in
physical storage are managed by the operating system).

A directory can include a file that is itself a directory (sometimes referred to as a subdirectory) and so on,
through a number of levels in a hierarchical arrangement. For example, in Figure 12 on page 177, the
slash (/) symbol at the top represents the root directory, which all other directories are descended from.
There are ten directories branching from the root. Each of these directories, in turn, has its own system of
subdirectories and files. For example, localedef is a subdirectory in the directory /usr/lib/nls.

When you first enter the z/OS shell, you are automatically placed in your home directory, which is defined
when your user ID is defined.

Files
In addition to directories, there are four other types of files that can exist in the file system:

• A regular file is an identifiable (named) unit of text or binary data information. A file can be C source
code, a list of names or places, a printer-formatted document, a string of numbers organized in a certain
way, an employee record containing smaller information units in fields, a memo, and many other

178 z/OS: UNIX System Services User's Guide

possible things. A user or an application program must understand how to access and use the individual
increments of information (such as employee record fields) within a file.

• A character special file defines one of the following:

– A terminal (/dev/ptypnnnn and /dev/ttypnnnn).
– The default controlling terminal for a process (/dev/tty).
– A null file (/dev/null). Data written to this file is discarded; hence, it is known as the bit bucket. This

file is always empty for reading.
– A zero file (/dev/zero). Data written to this file is discarded and binary zeros are supplied for any

amount read from it.
– The random number files (/dev/random and /dev/urandom). These files provide random numbers

for cryptographic purposes.
– A file descriptor file (/dev/fdn or /dev/fd/n).
– A system console file (/dev/console). Data that is written to this file is sent to the console using a

write-to-operator (WTO) that displays the data on the system console.
– A UNIX domain socket name file. This is a path name that specifies the socket address for a UNIX

domain socket. The path name is assigned by the application programmer; there is no convention for
the name. The operating system creates the file.

– A Communications Server remote tty file (for example, rtynnnn) that corresponds to the requesting
terminal on the originating Communications Server node. The name is assigned by the
Communications Server administrator.

– The Communications Server character special file (/dev/ocsadmin) that supports ioctl functions
for Communications Server administrative functions.

Character special files are dynamically created by the operating system when they are first referenced.
However, they can also be explicitly created by a superuser (for instance, in order to assign different
permissions).

• A FIFO special file is a file that is typically used to send data from one process to another so that the
receiving process reads the data first-in-first-out (FIFO). A FIFO special file is also known as a named
pipe.

• A symbolic link is a file that contains the path name for another file, in essence a reference to the
original file. Only the original path name is the real name of the original file. You can create a symbolic
link to a file or a directory. These are symbolic links: /etc, /tmp, /dev, and /var.

An external link is a type of symbolic link, a link to an object outside of the z/OS UNIX file system.
Typically, it contains the name of an MVS data set.

Users and programs create regular files, FIFO special files, symbolic links, and external links.

Files not in the file system
There are two types of unnamed files that you might be aware of, but that do not exist in the file system:

Unnamed pipes: A program creates a pipe with the pipe() function. A pipe typically sends data from one
process to another; the two ends of a pipe can be used in a single program task. A pipe does not have a
name in the file system, and it vanishes when the last process that is using it closes it.

Sockets: A program creates a socket with the socket() function. A socket is a method of communication
between two processes that allows communication in two directions, in contrast to a pipe, which allows
communication in only one direction. The processes using a socket can be on the same system or on
different systems in the same network.

Comparison between MVS data sets and the z/OS UNIX file system
In Figure 14 on page 180, you see that:

• The MVS master catalog is analogous to the root directory in a z/OS UNIX file system.

An introduction to the z/OS UNIX file system 179

• The user prefix assigned to MVS data sets is an organizer analogous to a user directory (/u/smitha) in
the file system. Typically, one user owns all the data sets whose names begin with his user prefix. For
example, the data sets belonging to the TSO/E user ID SMITHA all begin with the prefix SMITHA. There
could be data sets named SMITHA.TEST1.C, SMITHA.TEST2.C, SMITHA.TEST1.LIST, and
SMITHA.TEST2.LIST.

In the file system, SMITHA would have a user directory named /u/smitha; under that directory there
could be subdirectories named /u/smitha/test1 and /u/smitha/test2.

• Of the various types of MVS data sets, a partitioned data set (PDS) is most akin to a user directory in the
file system. In a partitioned data set such as SMITHA.TEST1.C, you could have members PGMA, PGMB,
and so on—for example, SMITHA.TEST1.C(PGMA) and SMITHA.TEST1.C(PGMB). Likewise, a
subdirectory such as /u/smitha/test1 can hold many files, such as pgma.c, pgmb.c, and so on.

z/OS UNIX

File System
MVS

Data Sets

Master
Catalog

User Prefix
SMITHA

Partit ioned Data Set
SMITHA.TEST1.C

Sequential Data Set

VSAM Data Set

Member
SMITHA.TEST1.C

PGMA PGMB

File
/u/smitha/test1

pgma.c pgmb.c

Subdirectory

/u/smitha

/u/smitha/test1

User Directory

Root/

Figure 14: Comparison of MVS data sets and the z/OS UNIX file system

Sharing files between LPARs
z/OS UNIX files cannot reside on a DASD that is shared in read/write mode between LPARs. However, you
can share z/OS UNIX files (both zFS files and HFS files) between LPARs when you use the shared file
system capability provided by z/OS UNIX. To share only zFS files, you can use the sysplex support found in
zFS.

Executable modules in the file system
You can have an executable module in the z/OS UNIX file system. To run a shell script or executable, a
user must have read and execute permissions to the file. Use chmod to set the permissions.

180 z/OS: UNIX System Services User's Guide

• For frequently used programs in the file system, you can use the chmod command to set the sticky bit.
This reduces I/O and improves performance. When the bit is set on, z/OS UNIX searches for the
program in the user's STEPLIB, the link pack area, or the link list concatenation. For further information,
see “Using a symbolic mode to specify permissions” on page 219.

• The extattr command is used to set, reset and display extended attributes for files to allow
executable files to be marked so they run APF authorized, as a program controlled executable, or not in
a shared address space.

The ls shell command has an option that displays these attributes:
-E

Displays extended attributes for regular files:
a

Program runs APF authorized if linked AC=1
p

Program is considered program controlled
s

Program runs in a shared address space
-

Attribute not set

When the extattr attribute l is set (+l) on an executable program file, it will be loaded from the
shared library region.

• You can copy executable modules between z/OS UNIX and the file system. For more information about
how to do this, see “Copying executable modules between MVS data sets and the z/OS UNIX file
system” on page 264.

• For information about how to set up a STEPLIB environment for an executable file, see “Building a
STEPLIB environment: The STEPLIB environment variable” on page 45.

For more information about the ls and extattr shell commands, see z/OS UNIX System Services Command
Reference.

Path and path name
The set of names required to specify a particular file in a hierarchy of directories is called the path to the
file, which you specify as a path name. Path names are used as arguments for commands.

An absolute path name is a sequence that begins with a slash for the root, followed by one or more
directory names separated with slashes, and ends with a directory name or a file name. The search for the
file begins at the root and continues through the elements in the path name until it gets to the final name.
For example:

/u/smitha/projectb/plans/1dft

is the absolute path name for 1dft, the first draft of the plans for a particular project that a user named
Alice Smith (smitha) is working on.

Instead of using the absolute path name with shell commands, you can specify a path name as relative to
the working directory; this is called the relative path name. In most cases, a user can specify a particular
file without having to use its absolute path name. A relative path name does not have a / at the beginning,
and the search for the file begins in the working directory. For example, if Alice Smith is working in the
directory projectb, she can specify the relative path name for the file /u/smitha/projectb/plans/
1dft as:

plans/1dft

A path name can be up to 1023 characters long, including all directory names, file names, and separating
slashes. For path names and file names, use characters from the POSIX portable character set is

An introduction to the z/OS UNIX file system 181

recommended. Using DBCS data in these names is not recommended because unpredictable results
might occur.

The system performs path name resolution to resolve a path name to a particular file in a file hierarchy.
The system searches from element to element in a path name in order to find the file.

Requirement for an absolute path name
In some situations, an absolute path name is required. Table 10 on page 182 shows that job control
language (JCL) and some TSO/E commands require an absolute path name and that they require an MVS
data set name to be specified in a certain way. In these situations, the maximum length of the absolute
path name is 255 characters.

Table 10: Requirements for absolute path names

 Commands Path name Dataset name

JCL Absolute, in single
quotation marks

Fully qualified (no quotation marks needed).

ALLOCATE command Absolute, in single
quotation marks

Fully qualified in single quotation marks. If
specified without quotation marks, the TSO/E
prefix is added to the data set name. Normally the
TSO/E prefix is the TSO/E user ID (this can be
hanged with the PROFILE PREFIX() command).

OEDIT and OBROWSE
commands

Absolute, unless you are
working in your current
directory

Not applicable

OPUT, OGET commands Absolute (unless you are
working in your home
directory), in single
quotation marks

Fully qualified in single quotation marks. If
specified without quotation marks, the TSO/E
prefix is added to the data set name. Normally the
TSO/E prefix is the TSO/E user ID. The prefix can be
changed with the PROFILE PREFIX() command.

OPUTX, OGETX
commands

Absolute (unless you are
working in your home
directory)

Fully qualified in single quotation marks. If
specified without quotation marks, the TSO/E
prefix is added to the data set name. Normally the
TSO/E prefix is the TSO/E user ID. The prefix can
be changed with the PROFILE PREFIX() command.

Resolving a symbolic link in a path name
A symbolic link is a file that contains the path name for another file; that path name can be relative or
absolute. If a symbolic link contains a relative path name, the path name is relative to the directory
containing the symbolic link.

If you use a symbolic link as a component of a path name, during path name resolution the original path
name is changed. How it changes depends on whether the symbolic link contains a relative or absolute
path name. For example, consider the path name /u/turbo/dlg/lev1:

• If dlg is a symbolic link containing the relative path name dbopt/pgma/src, dlg is replaced by the
relative path name. This is how it resolves:

/u/turbo/dlg/lev1 → /u/turbo/dbopt/pgma/src/lev1

182 z/OS: UNIX System Services User's Guide

• If dlg is a symbolic link containing the absolute path name /usr/bin/dbopt/pgma/src, then the
components in the original path name that preceded dlg are replaced by the absolute path name in the
symbolic link. This is how it resolves:

/u/turbo/dlg/lev1 → /usr/bin/dbopt/pgma/src/lev1

Up to eight symbolic links can be resolved in a path name.

Note: An external link is a type of symbolic link that refers to an object outside of the hierarchical file
system. As used by the Network File System feature, an external link refers to an MVS data set name.

Symbolic and external links with a sticky bit

The following behavior applies to DLLs and all forms of spawn() and exec(). What applies for exec()
also applies for all forms of module loading.

• External links

exec() does a stat() on the passed file name. stat() does the search, not exec(). If the file name
is an external link, then stat() fails with a unique reason code which causes exec() to read the
external link. If the external link name is a valid PDS member name (that is, 1 - 8 alphanumeric or
special characters), then exec() attempts to locate the module in the MVS search order. If it cannot
find the module, exec() fails.

The external link is normally used when you want to set the sticky bit on for a file name which is longer
than eight characters or contains characters that are unacceptable for a PDS member name.

• Symbolic links

If the file name you specify is a symbolic link and exec() sees the sticky bit on, then it truncates any
dot qualifiers. As long as the base file name is an acceptable PDS member name, the need to set up
links in order to get exec() to go to the MVS search order should not be an issue.

For example, if you have a file named java.jll, when you set the sticky bit on, exec() attempts to
load a member named JAVA. If exec() cannot find JAVA, it reverts to using the java.jll file in the
file system.

The important thing to understand is that exec() never sees the name that the symbolic link resolves
to, even though it can see the stat() data for the final file.

Example: If you define /u/user1/name1 as a symbolic link to /u/user1/name2 and then invoke
name1, the following occurs:

1. The shell will spawn name1.
2. spawn() will access the file for name1, unaware that there is a symbolic link already established. It

will access the name2 file by its underlying vnode, not by the name2 handle.
3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for name1 (the only name it

has to work with).

Command differences with symbolic links
Certain directories like /etc, /dev, /tmp, and /var are converted to symbolic links. Some shell
commands have minor technical differences when they refer to symbolic links instead of regular files or
directories. For example, ls does not follow symbolic links by default.

In order to follow symbolic links, you must specify ls -L or provide a trailing slash. For example, ls -
L /etc and ls /etc/ both display the files in the directory that the /etc symbolic link points to.

Other shell commands that have differences due to symbolic links are du, find, pax,rm, and tar.

While these behavioral changes should be minor, users can tailor command defaults by creating aliases
for the shell command. For example, if you want ls to follow symbolic links, you could issue the
command alias ls="ls -L". Aliases are typically defined in the users' ENV file.

An introduction to the z/OS UNIX file system 183

Note: After this alias has been established, ls will follow all symbolic links.

An administrator can put alias commands in /etc/profile that could affect all users' login shells.
IBM does not recommend this, because changing the default behavior in /etc/profile might produce
unexpected results in shell scripts or by shell users.

Using commands to work with directories and files
There are numerous shell commands you can use to create and work with directories and files. See the
z/OS shell summary section in z/OS UNIX System Services Command Reference for a list of them.

To get online help for using the shell commands, you can use the man command.

You can also use TSO/E commands to do certain tasks with the file system. Some of these are tasks that
UNIX users traditionally perform while in the shell.
Command

Task
ISHELL

Invoke the ISPF shell. This is a panel interface for performing many user and administrator tasks. For
more information, see “Using the ISPF shell” on page 157.

MKDIR
Create a directory. Unlike the mkdir shell command, this command does not create intermediate
directories in a path name if they do not exist.

MKNOD
Make a character special file. To use this command, you must be a superuser.

MOUNT
Add a mountable file system to the file hierarchy. To use this command, you must have mount
authority. (See the section on mounting file systems in z/OS UNIX System Services Planning.)

OBROWSE
Browse (read but not update) a z/OS UNIX file using the ISPF full-screen browse facility.

OCOPY
Copy data between sequential data sets, or PDS and PDSE members, and z/OS UNIX files.

OEDIT
Create or edit text using the ISPF editor.

OGET
Copy a z/OS UNIX file to an MVS sequential data set or partitioned data set member. You can specify
text or binary data, and select code page conversion.

OGETX
Copy one or many files from a directory to a partitioned data set, a PDS/E, or a sequential data set.
You can specify text or binary data, select code page conversion, allow a copy from lowercase file
names, and delete one or all suffixes from the file names when they become PDS member names.

OPUT
Copy an MVS sequential data set or partitioned data set member to a z/OS UNIX file. You can specify
text or binary data, and select code page conversion.

OPUTX
Copy one or many members from a partitioned data set, PDS/E, or a sequential data set to a directory.
You can specify text or binary data, select code page conversion, specify a copy to lowercase file
names, and append a suffix to the member names when they become file names.

OSTEPLIB
Build a list of files that are sanctioned as valid step libraries for programs that have the set-user-ID or
set-group-ID bit set. To use this command, you must be a superuser.

184 z/OS: UNIX System Services User's Guide

UNMOUNT (or UMOUNT)
Remove a file system from the file hierarchy. To use this command, you must have mount authority.
(See the section on mounting file systems in z/OS UNIX System Services Planning.)

For information about existing TSO/E commands that you might commonly use, see z/OS TSO/E Command
Reference.

To get online help for TSO/E commands, you can use either the TSO/E HELP command. See “Entering a
TSO/E command” on page 185 for information about entering TSO/E commands in TSO/E, the shell, and
ISPF.

Entering a TSO/E command
How you can enter a TSO/E command depends on whether you are using the OMVS terminal interface or
the asynchronous terminal interface you get with rlogin, telnet, or the Communications Server.

On the OMVS terminal interface, you can enter a TSO/E command:

• At the TSO/E READY prompt.
• In the shell, using the tso shell command. For more information about this command, see z/OS UNIX

System Services Command Reference.
• In the shell, by typing a TSO/E command at the shell prompt and pressing the TSO function key to run it.
• On an ISPF panel.

CAUTION: You need to be aware of two things about entering TSO/E commands in ISPF:

1. On most ISPF panels, you must type TSO before the name of the TSO/E command; for example,

TSO OBROWSE 3 fopen

However, on the TSO Command Processor panel (ISPF option 6), you can just enter the name
of the TSO/E command, unless the command exists in both ISPF and TSO (for example, HELP or
PRINT).

2. On most ISPF panels, ISPF folds what you type to uppercase. ISPF folds lowercase or mixed-
case file names to uppercase, even if they are enclosed in single quotation marks. However, the
TSO Command Processor panel (ISPF option 6) processes what you enter exactly as it is typed
—mixed case, uppercase, or lowercase.

On an asynchronous terminal interface, you can enter TSO/E commands in the shell, using the tso shell
command. For more information about this command, see the tso command in z/OS UNIX System
Services Command Reference.

Using a relative path name on TSO/E commands
If you run a TSO/E command by using the OMVS TSO subcommand or function key or the tso -o
command, the TSO/E command runs in your TSO/E address space. The working directory of your TSO/E
address space is typically your home directory. Therefore, if you specify a relative path name on a TSO/E
command, the system searches for it in your home directory, even if you are working in a different
directory.

If you run a TSO/E command by using the tso -t command, it runs in its own process. If you run the
command using a relative path name, the system searches for it in your working directory.

Finding the data set that contains a file
To determine which data set (file system) contains a file, use the df shell command. You can use df to find
the data set (file system) that contains your current working directory, or df file name to find the data set
of another file.

An introduction to the z/OS UNIX file system 185

Using the ISPF shell to work with directories and files
If you are a user with an MVS background, you may prefer to use the ISPF shell panel interface instead of
shell commands or TSO/E commands to work with the file system. The ISPF shell also provides the
administrator with a panel interface for setting up users for z/OS UNIX access, for setting up the root file
system, and for mounting and unmounting a file system. For more information about the ISPF shell, see
“Using the ISPF shell” on page 157.

Using the Network File System feature
Using the Network File System feature, you can mount z/OS UNIX files on an empty directory at your
workstation.

To access the z/OS UNIX files, you first enter the mvslogin command, which gives you permission to use
NFS.

Then you enter the mount command to make a connection between a mount point on your local file
system and a directory or file in the z/OS UNIX file system. After a directory is mounted, you can create,
delete, read, or write to a file in or below that directory in the file hierarchy; generally, you can treat a file
in or below that directory as a member of your own workstation file system.

• For text files, the Network File System feature handles conversion between the EBCDIC code page used
in the z/OS shell and the ASCII code page used at your workstation.

• RACF checks the authority of a workstation user to access z/OS UNIX files on the host. This is based on
the authority of the MVS user ID specified on the mvslogin command.

For more information, consult the appropriate Network File System documentation.

External links
An external link is a type of symbolic link that you can use to associate an MVS data set or PDS member
with a z/OS UNIX path name. The external link lets the NFS client user transparently access an MVS data
set using a path name. A program using the exec() family of functions or the exec, loadhfs, or spawn
callable services can also access an MVS data set using an external link.

The data set appears in a mounted z/OS UNIX directory with z/OS UNIX files. If you are working with both
MVS data sets and z/OS UNIX files on the workstation, with an external link you can have one directory for
both the data sets and the files—for example, /host, instead of /host/ds for the data sets and /
host/hfs for the files.

For information about how to create an external link when working at the host, see “Creating an external
link” on page 204.

Security for the file system
The security facility is assumed to be the Resource Access Control Facility (RACF). You could use an
equivalent security product.

The file system and power failures
If the power fails, you might lose recent data that is still buffered, but the file system structures,
directories, inodes and such, will not be damaged. A shadow writing technique is used to ensure that
structural changes are always committed automatically. The z/OS UNIX file system does its own repair, as
needed, on each mount of a file system. This is based on records it keeps of changes in progress.

There is no fsck command and the z/OS UNIX file system was designed so that this is not needed. The
fsck utility generally ensures structural integrity, not data integrity.

186 z/OS: UNIX System Services User's Guide

Of course, there is always a possibility that user data, critical file system data, or the media can be
damaged, so prudent backup procedures are always warranted.

An introduction to the z/OS UNIX file system 187

188 z/OS: UNIX System Services User's Guide

Chapter 15. Converting files between code pages

Enhanced ASCII and Unicode Services make porting applications to z/OS UNIX easier by providing
conversion from ASCII to EBCDIC.

Enhanced ASCII
Enhanced ASCII enables users to deal with files that are in both ASCII and EBCDIC format. z/OS is an
EBCDIC platform. The z/OS UNIX shells and utilities are configured as EBCDIC programs. That is,
characters are coded in the EBCDIC code set. Before z/OS Version 1 Release 2, applications that ran on
z/OS UNIX had to exist in EBCDIC form, and expected text data to be stored in EBCDIC form. If you
wanted to convert files from EBCDIC to ASCII or ASCII to EBCDIC, you needed to use iconv. With
Enhanced ASCII, you can deal with applications and their data in your choice of ASCII or EBCDIC code
sets. z/OS UNIX still operates as an EBCDIC system, but it can automatically convert the data from ASCII
to EBCDIC and back as necessary to complete commands and tasks.

File tagging in Enhanced ASCII
Enhanced ASCII provides support for file tagging. File tags are used to identify the code set of text data
within files. When Enhanced ASCII functionality is enabled, z/OS UNIX needs to know whether files are
encoded as ASCII or EBCDIC. The file tag provides this data. If no file tag exists on a particular file, that
file is treated as an EBCDIC file. Setting a file tag does not force automatic code set conversion but allows
it to take place when automatic code set conversion is enabled. For additional information on automatic
code set conversion, see “Automatic code set conversion” on page 190.

Note: An entire file system can be mounted such that untagged files and new files created within the file
system are treated as tagged while the mount option is in effect.

z/OS utilities provide options to manage tags on UNIX files. The chtag command allows you to set,
modify, remove, or display information in a file tag. In this example:

chtag -t -c ISO8859-1 christmas.songs

the file christmas.songs is tagged as an ASCII file. ISO8859–1 is the code set for ASCII. In this
example:

chtag -t -c IBM-1047 christmas.recipes

the file christmas.recipes is tagged as an EBCDIC file. IBM-1047 is the code set for EBCDIC.

The ls command with option -T and the command chtag -p display information about the file text and
codeset tags. For more information about the chtag and ls commands, see z/OS UNIX System Services
Command Reference.

Unicode Services
z/OS UNIX exploitation of Unicode Services is functionally similar to that provided for Enhanced ASCII.
The basic EBCDIC nature of the z/OS platform remains. Likewise, programs cannot alter their EBCDIC
nature as compiled units, except for C programs, which can be compiled as ASCII. Locale restrictions that
apply to Enhanced ASCII functions apply to Unicode Services functions as well.

For more information about Unicode Services, see z/OS Unicode Services User's Guide and Reference.

© Copyright IBM Corp. 1996, 2018 189

File tagging in Unicode Services
Files that are tagged can be converted between any CCSID of the program or user and the CCSID of the
file, if Unicode Services supports that conversion. Unlike Enhanced ASCII, which affects conversion of
regular file, pipes, and character special files, an environment enabled for Unicode Services environment
affects regular files and pipes only. No character special support beyond that provided for Enhanced
ASCII is included.

Automatic code set conversion
Automatic conversion of files from one code set to another is controlled globally by the AUTOCVT(ON|
OFF) parameter in the BPXPRMxx parmlib member. AUTOCVT can be overridden by individual programs
at a thread level, and therefore is a controlling switch only for programs that do not explicitly establish
their own conversion options. The default setting for AUTOCVT is OFF.

Although the value of AUTOCVT can be changed using the SETOMVS command, changing the conversion
mode does not affect conversion of opened files for which I/O has already started.

When AUTOCVT(ON) is set, every read or write operation for a file is checked to see if conversion is
necessary. A performance penalty is therefore involved, even if no conversion occurs. It is recommended
that AUTOCVT be left off and each program be enabled for conversion.

For information about commands that allow or disallow automatic code set conversion by default, see
Controlling text conversion for z/OS UNIX shell commands in z/OS UNIX System Services Command
Reference.

Porting considerations
If your system administrator enabled Enhanced ASCII or Unicode Services, you can able to tell z/OS UNIX
which files are ASCII (code set ISO8859-1) files and which files are EBCDIC (code set IBM-1047) files.
This enhanced functionality is useful when working with portable XPG 4.2 applications that are written in
ASCII. You can port an application to z/OS UNIX, compile it in ASCII, and also tag text files as ASCII. z/OS
UNIX performs conversion when an ASCII program reads or writes an EBCDIC tagged file or when an
EBCDIC program reads or writes an ASCII tagged file.

For more information about enabling Enhanced ASCII or Unicode Services at the system level, see
converting files between code pages and Using Unicode Services in z/OS UNIX System Services Planning.
For information about porting applications to z/OS UNIX, see z/OS UNIX System Services Porting Guide.

190 z/OS: UNIX System Services User's Guide

Chapter 16. Working with directories

This information covers these topics:

• The working directory
• Displaying the name of your working directory
• Changing directories
• Creating a directory
• Removing a directory
• Listing directory contents
• Comparing directory contents
• Finding a directory or file

The working directory
The shell always identifies a particular directory within which you are assumed to be working. This
directory is known as the working directory (also known as the current working directory). To work with a
file within your working directory, you need specify only the file name with a command. If you want to
work with a file in another directory, you can change your working directory, using the cd shell command
and naming the new directory.

Tip: Instead of changing directories, you could use relative notation to access a file in a different
directory; see “Using notations for relative path names” on page 192 for more information.

When you type the OMVS command and begin working in the shell environment, you are placed in your
home directory as your working directory.

Displaying the name of your working directory
To check on the name of the directory you are currently working in, just enter the pwd command (print
working directory).

If Alice Smith is working in her home directory, for example, the system displays the name of her working
directory in this form:

/u/smitha

/u/smitha is the pathname of her working directory.

If Alice Smith enters the command cd projecta, the projecta subdirectory of her home directory
becomes her working directory. If she issues the pwd command, it displays:

/u/smitha/projecta

Note: A directory name can be specified in two ways, with or without a trailing slash; for example:

/u/smitha/projecta
/u/smitha/projecta/

In this topic, a trailing slash is not used.

© Copyright IBM Corp. 1996, 2018 191

Changing directories
Use the cd command to change from one working directory to another. If you have permission to access
the directory, you can move to any directory in the file system by using cd and the path name for the
directory:

cd pathname

See Chapter 18, “Handling security for your files,” on page 217 for more information on directory
permissions.

When you want to go to your home directory, just enter the cd command with no arguments:

cd

To change to a directory other than your home directory, you must supply the path name. For example, if
Alice Smith is working in her home directory (smitha) and she wants to switch to her projectb directory,
she types the relative path name:

cd projectb

To check that she has changed directories, Alice types pwd and the system displays:

/u/smitha/projectb

Using notations for relative path names
To change directories quickly or to work with a file name in another directory, use these relative path
name notations:

dot notation (. and ..)
tilde notation (~)

Dot notation

If you use the ls -a command to list the contents of a directory, you see that every directory contains
the entries . (dot) and .. (dot dot):
. (dot)

This refers to the working directory.
.. (dot dot)

This refers to the parent directory of your working directory, immediately above your working directory
in the file system structure.

If one of these is used as the first element in a relative path name, it refers to your working directory. If ..
is used alone, it refers to the parent of your working directory.

For example, if you are working in /bin/util/src, you can go to /bin/util by entering:

cd ..

Tilde notation

A ~ (tilde) can be used from the z/OS shell in several forms:

192 z/OS: UNIX System Services User's Guide

Notation Meaning

~ Your home directory (that is, the directory given by your HOME environment
variable). The command:

cp ~/file1 file2

copies file1 in your home directory into file2 in your working directory. This works
regardless of what your working directory is.

cp file1 ~/dir

copies file1 from the working directory into dir in your home directory.

~ + The variable $PWD (which contains the name of your working directory).

~ – The variable $OLDPWD (which gives the name of the working directory you were in
immediately before the last cd command).

~login name That user's home directory.

Example: To display the profile file of allane, from that user's home directory,
issue:

cat ~allane/.profile

This is useful if there are a group of you working on a project and you have read-
write access to some of each other's files.

Note: In the z/OS shell, your login name is your TSO/E user ID.

Example

Suppose that your home directory is /u/turbo and you are working in /u/turbo/prog/src, and you
want to display the file limits in the directory /u/turbo/appl/hdr. You could refer to the file in
several different ways:

cat ../../appl/hdr/limits
cat ~/appl/hdr/limits
cat /u/turbo/appl/hdr/limits

Creating a directory
To create a new directory, enter:

mkdir pathname

For example, if Alice Smith is working in her home directory, smitha, and she wants to create a new
directory, projecta, under her working directory, she would enter:

mkdir projecta

The default mode (read-write-execute permissions) for a directory that is created with mkdir is:

owner=rwx
group=rwx
other=rwx

For directories, execute permission means permission to search the directory. The octal representation of
these permissions is 777 (7 for the owner permission bits, the group permission bits, and the other
permission bits).

Working with directories 193

The new directory, projecta, is one level under her working directory. Figure 15 on page 194 shows this
relationship. If you do not specify an absolute path name for the directory to be created, the shell creates
the new directory as a subdirectory of whatever your working directory is at the time you enter the
command.

mkdir pro jecta
smitha

Working in

directory

smitha

Working in

directory

appldb

appldb

smitha

mkdir /u /smi tha/pro jecta

projecta

projecta

Figure 15: Creating a new directory

If you want to create a new directory that is not under your working directory, specify an absolute path
name. Both directory names and file names can be up to 255 characters long. To distinguish between
directory names and file names, you might want to adopt a naming convention.

Your business use naming conventions for directories. For example, a typical convention is for each user
to be assigned a directory that is based uniquely on the TSO/E user ID to make the name unique. Only that
user would have write access to the directory. For information on how to change access permissions for a
directory or file so that other users can read or write to it, see Chapter 18, “Handling security for your
files,” on page 217.

To create a new directory by using TSO/E, enter:

MKDIR 'directory_name' MODE(directory_permission_bits)

where directory_name specifies the path name of the directory to be created. The path name can be a full
path name or a relative path name. Specify the name, which can be up to 1023 characters long, in single
quotation marks. Specify MODE, the directory permission bits, in three octal characters; they can be
separated by commas or blanks. The default mode (read-write-execute permission) is:

owner = rwx
group = r-x
other = r-x

The octal representation of these permissions is 755. (When MKDIR is used to create a directory, the
default permission bits are different from when mkdir is used.) Here execute permission means
permission to search the directory.

194 z/OS: UNIX System Services User's Guide

For example, to specify a directory with a full path name and mode 700, enter:

MKDIR '/u/smitha/umods' MODE(7,0,0)

Use a full path name with the MKDIR command. When a relative path name is specified, MKDIR defines
the directory in the user's home directory, regardless of the working directory. If user Alice Smith is in her
home directory smitha and wants to create a directory with a relative path name and the default mode,
she can enter:

MKDIR 'umods'

The directory umods is one level under her home directory, smitha. Its full path name is /u/smitha/
umods.

Removing a directory
You can remove an empty directory (one with no files or subdirectories) from the file system with the
rmdir command. The format of the command is:

rmdir directory

To remove your working directory, you must first move into another working directory.

To delete the files in a directory and the directory itself in one step, use the rm command with the -r
option. The format of the command is:

rm -r file

where file is the name of the directory. Be careful! You may want to use the -i option so that you will be
prompted to confirm the deletions:

rm -ri file

Listing directory contents
The ls command lists the contents of a directory. To see the contents of your working directory, enter:

ls

To list the contents of a different directory, add the relative or absolute name of the directory you want to
look at, as in:

ls dira/dirb
ls abc/def/ghi

ls displays directory contents in alphabetic order. Typical ls output looks like:

bin csrb.cpy fifotest makefl temp.t
cc etc helplist phones.com totals

ls does not normally distinguish between directories, regular files, and special files. If you want a list of
directory contents that distinguishes between file types, use the -F option. Entering:

ls –F

gives you output in the form:

bin/ csrb.cpy fifotest| makefl/ temp.t
cc/ etc/ helplist phones.com* totals/

Working with directories 195

The symbols following the file names indicate the type of file:
/

Directory
*

Executable file
|

FIFO special file
@

Symbolic link
&;

External link
If there is no character following the file name, the file is none of these types.

ls can list the contents of more than one directory at a time. For example:

ls dir1 dir2

lists the contents of the two given directories, one after the other. Try this command on a pair of
directories to see what format ls uses.

The ls command with the -E option displays a character indicating whether or not the program is loaded
from the shared library region. If the program is from the shared library region, an 'l' will appear as the
fourth character in the second column. If the program is not from the shared library region, a '-' will
appear. For example:

total 11
-rwxr-xr-x -ps- 1 FRED SYS1 101 Oct 02 16:30 james
-rwxrwxrwx a-s- 1 FRED SYS1 654 Oct 02 16:30 backup
-rwxr-xr-x a--- 1 FRED SYS1 40 Oct 02 16:30 temp
-rwxr--r-- ap-l 1 FRED SYS1 562 Oct 02 16:34 diag
-rwxr--r-- --sl 1 FRED SYS1 106 Oct 02 16:53 bird

In this example, the files james, backup, and temp are not loaded from the shared library region, but the
files diag and bird are.

Comparing directory contents
You can use the command:

diff -r dir1 dir2

to check whole directories for changes. With the -r option, diff compares the files in dir1 with the files
in dir2 that have the same names.

This command can be useful if you have two directories that hold different versions of the same files and
subdirectories.

You can use the -r option with other commands. For example:

cp -r dir1 dir2

copies all the files and subdirectories from dir1 to dir2.

rm -r dir

removes all the files and subdirectories under dir and then removes dir itself.

196 z/OS: UNIX System Services User's Guide

Finding a directory or file
The find command lists the names of all the files under a directory with a given characteristic or set of
characteristics. The simplest version of the command is:

find dirname

It displays the names of all files under the given directory, including files in subdirectories under the
directory.

To display the names of all files whose names have the form specified in pattern, issue:

find dirname –name pattern

Example: To list the names of all files under the directory abc with the file name extension .lst,issue: (

find abc –name '*.lst'

The asterisk (*) is a wildcard character that stands for any sequence of zero or more characters.l Using
find, you can locate files quickly, even when you have a complicated file system structure, with many
directories and subdirectories. See the find command description in z/OS UNIX System Services Command
Reference.

Working with directories 197

198 z/OS: UNIX System Services User's Guide

Chapter 17. Working with files

This information covers these topics:

• Using an editor to create a file
• Naming files
• Deleting a file
• Deleting files over a certain age
• Identifying a file by its inode number
• Creating links
• Deleting links
• Renaming or moving a file or directory
• Comparing files
• Sorting file contents
• Counting lines, words, and bytes in a file
• Searching files by using pattern matching
• Browsing files
• Simultaneous access to a file
• Backing up and restoring files
• Listing process IDs of processes with open files

Using an editor to create a file
When you are logged into the shell, you have a choice of editors to use to create and change files,
depending on which terminal interface you are using, OMVS or the asynchronous terminal interface. For
details about the editors, see Chapter 19, “Editing files,” on page 227.

If you are using NFS from your workstation, you can edit z/OS UNIX files directly with your editor of
choice.

When you create directories and files, you can control access to them. Whenever you want, you can
change the access permissions that are set when you first create a directory or file. See Chapter 18,
“Handling security for your files,” on page 217 for more information about access permissions.

Naming files
A file name can be up to 255 characters long. To be portable, the file name should use only the characters
in the POSIX portable file name character set:

• Uppercase or lowercase A to Z
• Numbers 0 to 9
• Period (.)
• Underscore (_)
• Hyphen (-)

Do not include any nulls or slash characters in a file name.

© Copyright IBM Corp. 1996, 2018 199

The POSIX portable file name character set (see “The POSIX portable file name character set” on page
306) is a subset of the POSIX portable character set, which is listed in “The POSIX portable character set”
on page 306.

The POSIX portable character set (see “The POSIX portable character set” on page 306) is a complete list
of all valid characters for a file name.

Restriction: Double-byte characters are not supported in a file name and are treated as single-byte data.
Using double-byte characters in a file name might cause problems. For instance, if you use a double-byte
character in which one of the bytes is a . (dot) or / (slash), the file system treats this as a special delimiter
in the path name.

The shells are case-sensitive, and distinguish characters as either uppercase or lowercase. Therefore,
FILE1 is not the same as file1.

A file name can include a suffix, or extension, that indicates its file type. An extension consists of a period
(.) and several characters. For example, files that are C code could have the extension .c, as in the file
name dbmod3.c. Having groups of files with identical suffixes makes it easier to run commands against
many files at once.

Processing in uppercase and lowercase
Case-sensitive processing means that an environment distinguishes and handles characters as either
uppercase or lowercase: FILE1 is not the same file as file1. The availability of case-sensitive
processing depends on the environment:
Shell

Case-sensitive. In the file system, you can use mixed-case path names.
ISPF

To issue a TSO/E command with a z/OS UNIX path name and get case-sensitive processing of the path
name, enter the command on a command line that supports mixed-case processing, for example the
Command Processor panel (usually ISPF option 6). Some ISPF option panels convert the command
and file name to uppercase before they are processed.

The default ISPF edit profile usually folds to uppercase the data you enter in a file. To prevent this,
type caps off on the command line before you begin working in the file. After you enter caps off,
it remains in your profile.

If you are working on a file and realize that you have been typing in uppercase when you really wanted
lowercase, you can change the contents of the file to all lowercase. Type this on the command line:

c all p'>' p'<'

TSO/E
Case-sensitive. Follow the syntax rules of the command you are using. For instance, make sure to
enclose a path name in single quotation marks when using commands such as ALLOCATE, OPUT, and
so on.

JCL
Case-sensitive. You can specify z/OS UNIX files in DD statements by giving the absolute path name
(no relative path names) and enclosing the names in single quotation marks. Be careful to keep JCL
keywords such as DD, PATH, and so on, in uppercase.

Note: Traditional MVS utilities may define their own requirements for allowing mixed-case file names to
be specified as input (as compared with the rules for specifying mixed-case file names on DD statements
in JCL). For example, you need to use the binder's CASE=MIXED option if you want to bind a load module
into the file system and give the load module a lowercase name.

200 z/OS: UNIX System Services User's Guide

Deleting a file
The command rm can delete, or remove, several files at once. For example:

rm file1 file2 file3

removes all the specified files.

Suppose Alice Smith's directory projectb had several old meeting notices in it that she wanted to delete:
0607.mtg, 0615.mtg, 0623.mtg, and 0628.mtg. She could remove all four with just a single command:

rm 06*.mtg

Tip: Be careful when using the wildcard asterisk (*) for removing files; you may want to use the -i option,
which prompts you to verify the deletion.

For the tcsh shell, see “Displaying deletion verification” on page 60 for more information on how to
control the wildcard asterisk.

Deleting files over a certain age
The skulker shell script provides a way to delete files in a directory based on comparing the file's access
time to a specified age. This can be useful for removing temporary files created by utilities, or files that
were intended to be temporary but were forgotten about.

The skulker script is a z/OS shell script, and can be easily modified to fit any particular system or user
need. The script is located in /samples, but the system administrator should have relocated it somewhere
else. Check with the system administrator for the location of the script. You should copy the script into
your home directory or subdirectory, where you can modify it if you desire different removal criteria.

It is also possible to invoke the skulker script with the cron daemon so that it may be run on a regular
basis.

The format for running the skulker script is as follows:

skulker [-iw] [-r|-R] [-l logfile] directory days_old

The -i option displays the files that are candidates for deletion, and then prompts the user to terminate
the script or continue with the deletion.

The -w option does not delete the files, but sends a warning to the owner of each file (via mailx) that the
file is a candidate for deletion.

The -r option moves recursively through subdirectories, finding non-directory files that are equal to or
older than the specified number of days. The -r option is mutually exclusive with the -R option.

The -R option moves recursively through subdirectories, finding both non-directory files and
subdirectories that are equal to or older than the specified number of days. Any subdirectories that are
found as candidates for deletion are only deleted if they are empty after all their contents (files,
subdirectories and files in subdirectories) that are candidates for deletion have been deleted. The -R
option is mutually exclusive with the -r option.

The -l logfile specifies a logfile to store a list of files that have been deleted, are candidates for deletion,
or for which warnings have been mailed; and any errors that might have occurred.

directory specifies the directory in which to look for files that are candidates for deletion.

days_old specifies the age of files you want to remove, based on when the file was last accessed.

For more information about the skulker script, including restrictions, see skulker in z/OS UNIX System
Services Command Reference.

Working with files 201

Identifying a file by its inode number

In addition to its file name, each file in a file system has an identification number, called an inode number,
that is unique in its file system. The inode number refers to the physical file, the data stored in a particular
location. A file also has a device number, and the combination of its inode number and device number is
unique throughout all the file systems in the hierarchical file system.

A directory entry joins a file name with the inode number that represents the physical file.

To display the inode numbers of the files in your working directory, enter:

ls -i

If Alice Smith issues that command for her proja directory, she sees the following display:

1077 inspproc 1077 isoproc 1492 kgnproc 1500 mcrproc

Because the files inspproc and isoproc are hard-linked, they have the same inode number.

Creating links
A link is a new path name, or directory entry, for an existing file. The new directory entry can be in the
same directory that holds the file or in a different directory. You can access the file under the old path
name or the new one. After you have a link to a file, any changes you make to the file are evident when it is
accessed under any other name.

You might want to create a link:

• If a file is moved and you want users to be able to access the file under the old name.
• As an alias: You can create a link with a short path name for a file that has a long path name.

You can use the ln command to create a hard link or a symbolic link. A file can have an unlimited number
of links to it.

Creating a hard link
A hard link is a new name for an existing file. You cannot create a hard link to a directory, and you cannot
create a hard link to a file on a different mounted file system.

All the hard link names for a file are of equal importance with its original name. They are all real names for
the one original file. To create a hard link to a file, use this command format:

ln old new

Thus, new is the new path name for the existing file old. In Figure 16 on page 203, /u/benson/proja is
the new path name for the existing file /u/smitha/proja.

202 z/OS: UNIX System Services User's Guide

/

U

smitha benson

file1
inode 0333

pgm1

inode 1121

proja

inode 1077
test

inode 2323
file1

inode 1456

Figure 16: Hard link: a new name for an existing file

When you create a hard link to a file, the new file name shares the inode number of the original physical
file, as shown in Figure 16 on page 203. Because an inode number represents a physical file in a specific
file system, you cannot make hard links to other mounted file systems.

Creating a symbolic link
You can create a symbolic link to a file or a directory. Additionally, you can create a symbolic link across
mounted file systems, which you cannot do with a hard link. A symbolic link is another file that contains
the path name for the original file; in essence, a reference to the file. A symbolic link can refer to a path
name for a file that does not exist.

To create a symbolic link to a file, use this command format:

ln -s old new

Thus, new is the name of the new file containing the reference to the file named old. In Figure 17 on page
203, /u/benson/proja is the name of the new file that contains the reference to /u/smitha/proja.

\

u

smitha benson

proja
proja

inode 1077
inode 1946

/u/smitha/proja

Figure 17: Symbolic link: a new file

Working with files 203

When you create a symbolic link, you create a new physical file with its own inode number, as shown in
Figure 17 on page 203. Because a symbolic link refers to a file by its path name rather than by its inode
number, a symbolic link can refer to files in other mounted file systems.

To understand how a symbolic link that is a component of a path name is handled during path name
resolution, see “Resolving a symbolic link in a path name” on page 182.

Creating an external link
An external link is a special type of symbolic link, a file that contains the name of an object outside of the
z/OS UNIX file system. Using an external link, you associate that object with a path name. For example,
setlocale() searches for locale object files in the z/OS UNIX file system, but if you want to keep your locale
object files in a partitioned data set, you can create an external link in the file system that points to the
PDS. This will improve performance by shortening the search made by setlocale().

A file can be an external link to a sequential data set, a PDS, or a PDS member. When a file is an external
link to an MVS data set, an NFS client user can use the path name to access the data set. To use the path
name to edit, browse, or display the attributes of the data set that is the target of an external link, you
must be using the Network File System feature. Working in a shell, you can create (ln) an external link,
display information (ls) about the link (not the target of the link), or delete (rm) the link.

These services support external links:

• NFS client: You can create external links as files within the z/OS UNIX file system and then access these
files as an NFS client user to access the MVS data sets that they point to.

• A program using the exec() family of functions, the BPX1EXC (exec) callable service, the BPX1LOD
(loadhfs) callable service, or the BPX1SPN (spawn) callable service can access an MVS data set using an
external link. This capability includes external link programs that are invoked as commands in the shell.

• Dynamic link libraries: The external link name used on a DLL load is a member name. For example, you
would code a link as:

 ln -e IMWYWWS /usr/lpp/internet/bin/wwwss.so

where IMWYW

/

u

brooks

plib

Pgm1 inode1995

BROOKS.PLIB.PGM1

BROOKS.PLIB.PGM1

Figure 18: External link: A new file

WS is the member name that is linked to the file wwwss.so.

To create an external link to a data set, use this command format:

ln -e old new

In Figure 18 on page 204, /u/brooks/plib/pgm1 is the name of the new file that contains the
reference to the partitioned data set BROOKS.PLIB.PGM1.

204 z/OS: UNIX System Services User's Guide

Limitations of an external link: z/OS UNIX C programs running cannot fopen() or fread() an external
link. For more information, see the ln command description in z/OS UNIX System Services Command
Reference.

Due to NFS protocol limitations, -e does not create an external link on NFS. For more information on
creating an external link on NFS, see creating an external link in z/OS Network File System Guide and
Reference.

Deleting links
To delete a file that has hard links, you must enter rm against all the link names, including the original file
name. If you try to delete a file that is hard-linked, its contents do not disappear until you remove every
link to it.

To delete a file that is a symbolic link, you enter rm against the symbolic link name. This removes the link,
not the file it refers to. When you delete a file that is symbolically linked, any remaining symbolic links
refer to a file that no longer exists. If you know the names of the symbolic link files, you may want to
delete them.

To delete a file that is an external link, run rm against the external link name. If you delete a data set that
is externally linked, the remaining external link refers to a data set that no longer exists.

Renaming or moving a file or directory
You can use the mv command to move or rename files. For example:

mv file1 file2

moves the contents of file1 to file2 and deletes file1. This is similar to:

cp file1 file2
rm file1

except that, when the files are in the same mountable file system, mv renames the file rather than copying
it. file1 and file2 do not have to be in the same directory.

The mv command can move several files from one place to another.

For example:

mv file1 file2 file3 directoryb

moves all three files to directoryb.

Using the -R or -r option, you can move a directory and all its contents (files, subdirectories, and files in
subdirectories) into another directory. For example:

mv -R directorya directoryb

Comparing files
Consider the following situation: A warehouse has an active file that keeps track of current inventory. As
goods are brought in, appropriate records are added to the file. As orders are shipped out, the records are
deleted. At the end of the day, the warehouse makes a copy of the active file to keep as a permanent
journal.

It would be useful for such a business to be able to compare one day's journal to another day's to see
what has changed. This can be done with the diff command:

diff oldfile newfile

Working with files 205

compares the two files. The output of diff shows lines that are in one file but not in the other. The lines
in oldfile but not in newfile are displayed with a < in front of them. Lines in newfile but not in oldfile are
displayed with > in front.

For example, say you have a file wmnhist.text with one line in it:

Susan B. Anthony awoke one morning

Then you created a copy of the file with the command:

cp wmnhist.txt newhist.txt

You use an editor—either the ISPF editor or the ed text editor—to change the first line in newhist.text to:

Sojourner Truth awoke one morning

You save the file. Now you enter the command:

diff wmnhist.txt newhist.txt

diff displays:

1c1
< Susan B. Anthony awoke one morning
--->
 Sojourner Truth awoke one morning

The 1c1 at the beginning of the diff output indicates that line 1 in the old file has changed (c) when
compared with line 1 in the new file. diff shows what must be changed in the first file to make it look like
the second file. Remember this sequence when you look at the output of diff. Here the first file,
wmnhist.txt, contained the line Susan B. Anthony awoke one morning where the second file,
newhist.txt, has Sojourner Truth awoke one morning.

New lines are indicated with an a (add lines), and lines that should be deleted are indicated with a d
(delete). See the diff command description in z/OS UNIX System Services Command Reference for more
details.

diff helps you determine what has changed in the time that elapsed between saving the two files. The
same sort of operation is useful in many record-keeping situations, any time you have two different
versions of the same file and you want to check the differences.

Sorting file contents
When you create a file of records, you usually do not type the information in any particular order. However,
you may want to keep lists in some useful order after you have entered the information. To sort the
records in a file, use the sort command. sort assumes two things:

• Your file contains one record per line. To put it another way, there is a single <newline> character
between a record and the next record.

• The fields in a record are separated by recognizable characters. In the sample file comics.lst in /
samples (shown in Figure 19 on page 207), we use colons.

206 z/OS: UNIX System Services User's Guide

 Detective Comics:572:Mar:1987:$1.75
 Demon:2:Feb:1987:$1.00
 Ex-Mutants:1:Sep:1986:$2.60
 Justice League of America:259:Feb:1987:$1.00
 Boris the Bear:1:Sep:1986:$1.50
 Flaming Carrot:14:Oct:1986:$2.75
 Demon:4:Apr:1987:$1.00
 The Question:1:Jan:1987:$2.10
 Elektra:7:Feb:1987:$2.00
 Howard the Duck:29:Jan:1979:$0.35
 Wonder Woman:3:Apr:1987:$1.00
 Justice League of America:261:Apr:1987:$1.00

Figure 19: A sample file: comics.lst

To sort a file such as our comic book file, enter:

sort /samples/comics.lst

This command sorts the list and displays it. To save the sorted list in a file, enter:

sort /samples/comics.lst >filename

where filename is the name of the file where you want to store the sorted list. For example:

sort /samples/comics.lst >sorted.lst

sorts the file and stores the result in sorted.lst without changing the input file.

When you use >filename to redirect sorted output into a file, you may want to make the output file name
different from the (unsorted) input file name. If you want to overwrite a file with its sorted contents, see
the description of the –o flag in the sort command description in z/OS UNIX System Services Command
Reference.

Using sorting keys — an example
By default, sort sorts according to all the information in the record, in the order given in the record. Since
the name of the comic book is the first thing on the line, the output is sorted according to comic book
name. But suppose that you want to sort according to some different piece of information. For example,
suppose you want to sort by date of publication. You can do this by specifying sorting keys.

A sorting key tells sort to look at specific fields in a record, instead of looking at each record as a whole. A
sorting key also tells what kind of information is stored in a particular field (for example, an ordinary word,
a number, or a month) and how that information should be sorted (in ascending or descending order).

A sorting key can refer to one or more fields. Fields are specified by number. The first field in a record is
field number 1, the field after the first separator character is field number 2, and so on. In the comic book
list, the month is field number 3, and the year is field number 4.

A single sort command can have several sorting keys. The most important sorting key is given first; less
important sorting keys follow. Let us look at an example that sorts by year and then by month within a
year. Therefore, the first sorting key refers to the year field, and the second to the month field. To specify a
sorting key, use the -k option. This option has the following format:

-k start_field[.char1] [opts] [,end_field[.char2] [opts]]

where start_field, end_field, char1, and char2 are all integers.

• start_field indicates which field in the input record contains the start of the sorting key.
• char1 indicates which character in that field is the first character of the key. Omitting char1 means the

key begins with the first character of the starting field.

Working with files 207

In our example, the first sorting key (referring to the year) has a start_field value of 4 (since the year is
field 4). We do not need to specify char1, since we want to start the key with the first character of the year
field.

The options, opts, are specified with letters; they identify the type of data in the specified field and tell
how to sort it. Some of the possible options and their meanings are:
d

Indicates that the field contains uppercase, lowercase, or mixed-case letters, letters and digits, or
digits. sort sorts the field in dictionary order, ignoring all other characters.

M
Indicates that the field contains the name of a month. sort looks only at the first three characters of
the name, so January, JAN, and jan are all equal.

n
Indicates that the field contains an integer (positive or negative).

Putting an r after any of these letters tells sort to sort in reverse order (from highest to lowest rather
than lowest to highest). For example, Mr means to sort in the order December, November, October, and
so on.

In our example the sorting key based on the year uses n. Thus, the sorting key for the year field (4) in the
file comics.lst is:

-k 4n

The second sorting key in the example refers to the month field (3). This key has the form:

-k 3M

A sort command that uses sorting keys needs to know which character separates the record fields. You
can specify this with the option -t followed by the separator character. The example uses -t:. Therefore,
the full sort command is:

sort -t: -k4n -k3M comics.lst >sorted.lst

The file to be sorted comes after the various options. This is the order that you must use. The redirection
construct can come anywhere on the line, but is usually put at the end.

Counting lines, words, and bytes in a file
The wc command tells you how big a text document is.

wc file file ...

tells you the number of lines, words, and bytes in each file.

If you want to find out how many files are in a directory, enter:

ls | wc

This pipes the output of ls through wc. Because ls prints one name per line when its output is being
piped or redirected, the number of lines is the number of files and directories under your working
directory.

Searching files by using pattern matching
One of the most common record-keeping operations is obtaining a sublist of a list. For example, you might
want to list all the Watchmen comics that appear in the main comics list. The command to do this is grep.

208 z/OS: UNIX System Services User's Guide

The simplest form of the grep command is:

grep word file

where word is a particular sequence of characters that you want to find, and file is your list of records.
grep lists every line in the file that contains the given word. For example:

grep Watchmen comics.lst

lists every line in comics.lst that contains the word Watchmen. As another example:

grep 1986 comics.lst

lists every line in comics.lst that contains the sequence of characters 1986. Presumably, this lists all the
comics that were published in 1986.

grep Jul:1986 comics.lst

lists all the comics published in July 1986.

If the string of characters you want to search for contains a blank, put single quotation marks
(apostrophes) around the string; for example:

grep 'Dark Knight' comics.lst

You can save a sublist created by grep in a file using redirection:

grep Elektra comics.lst >el.lst

Patterns
The examples of grep, so far, have displayed the records in a file that contain the desired string anywhere
in the line. If you want to be more specific—say to find records that begin with a certain string of
characters (instead of having that string anywhere in the line)—use grep with patterns instead of strings.

To understand patterns, it helps to think about the special wildcard characters discussed in “Using a
wildcard character to specify file names” on page 74. Remember that you can use patterns in commands;
for example:

rm *.txt

removes all files in the working directory that have the .txt extension. Instead of specifying a single file
name, this example uses the special character * to represent any file name of the appropriate form.

In the same way, a grep pattern uses special characters so that one pattern can represent many different
strings.

Note: The special characters for grep patterns are not the same as the characters used on command
lines, and the mechanisms involved are also different: however, patterns and wildcard characters are
conceptually similar.

Special characters used in a pattern are called pattern characters, or metacharacters. Some pattern
characters are:
^ (caret)

Stands for the beginning of a line. For example, ^abc is a pattern that represents abc at the beginning
of a line.

$ (dollar sign)
Stands for the end of a line. For example, xyz$ is a pattern that represents xyz at the end of a line.

. (dot or period)
Stands for any (single) character. For example, a.c is a pattern that represents a, followed by any
character, followed by c.

Working with files 209

* (asterisk)
Indicates zero or more repetitions of part of a pattern. For example, .* indicates zero or more
repetitions of . (period). Since the . stands for any character, .* stands for any number of characters.
For example, ^a.*z$ is a pattern that represents a at the beginning of a line, z at the end, and any
number of characters in between.

A typical grep command has the form:

grep 'pattern' file

This displays all the records in the file that match the given pattern. For example:

grep '^Superman' comics.lst

displays all the records that begin with the word Superman.

grep '00$' comics.lst

displays all the records that end in 00.

If you want to use the literal meaning of a pattern character instead of its special meaning, put a
backslash (\) in front of the character.

Example: To find all the lines that end in $1.00, issue:

grep '\$1\.00$' comics.lst

Without a backslash in front of the $ and . (period), these characters would have their special pattern
meanings.

Regular expressions
More complex patterns than the ones discussed here are accepted. The formal name for a pattern is a
regular expression. For further information, see Regular expressions (regexp) in z/OS UNIX System
Services Command Reference.

Browsing files
When you display, or browse, a file, you cannot make any changes to the file while you are viewing it. You
can browse a z/OS UNIX file using ISPF or using shell commands. With shell commands, you have the
choice of browsing the file in an unformatted or formatted display.

Browsing files without formatting
Using the shell: The z/OS shell has a quick way to find out what is in a given file: the head command and
the tail command.
head filename

Displays the first 10 lines of the given file or files.
tail filename

Displays the last 10 lines of the given file or files.

Suppose you have a file that contains records sorted according to date. tail tells you the date of the last
records in the file, giving you an idea of how current the file's contents are. In a sorted comic book list, for
example, tail could show the most recent comics that had been recorded in the file.

To display the contents of an entire file, you can use any of these commands: cat, pg, more, or obrowse.

Using ISPF: To use ISPF to browse a z/OS UNIX file, you can take one of the following actions:

210 z/OS: UNIX System Services User's Guide

• Enter the TSO/E OBROWSE command followed by the path name for the file. This command displays the
file, which you can begin browsing.

• Select an option for browse on the ISPF menu, if such an option is available.

After the file is displayed, you can use function keys to scroll forward and backward in the file.

For complete information about browsing, see z/OS ISPF User's Guide Vol II.

Browsing files with formatting
Using the shell: The term formatting refers to controlling the appearance of the file contents when you
browse or print them. You can use the pr command to browse (or print to standard output) a formatted
file:

pr file

You can specify more than one file name, each separated from the other by a space.

If you do not specify any options, pr formats the file into single-column, 66-line pages, each with a 5-line
header. The first 2 lines are blank. On the 3rd line appear the file's path name, the date of its last
modification, and the current page number. The next 2 lines are blank, and the text of the file begins on
the 6th line. At the end of each page, there are 5 blank lines. There are numerous options for the pr
command; for example, you can specify the page number where the display is to begin, specify output in
columns, or change the width of the displayed page.

Simultaneous access to a file
It is possible that two or more utilities or programs could be accessing the same file at the same time,
making changes. For example, two people could be using ed to edit the same file at the same time. When
a file has been accessed by more than one user simultaneously, the last changes saved overwrite any
previous changes.

In a program, you can use byte-range locking to avoid this problem. For more information about byte-
range locking in a program, see z/OS XL C/C++ Programming Guide.

You can use the Network File System feature to coordinate locking of remote files and directories. See
“Using the Network File System feature” on page 186 for an overview of this feature. For more detailed
information, consult the appropriate Network File System documentation.

Backing up and restoring files: options
There are several options for backing up and restoring files:

• Data Facility System-Managed Storage Hierarchical Storage Manager (DFSMShsm) provides automatic
backup facilities for data sets. The systems programmer uses DFSMShsm facilities to back up
mountable file systems by backing up the data sets that contain them on a regular basis; the data sets
can be restored when necessary. DFSMShsm is also used for migrating (archiving) and restoring
unmounted file systems.

• Tivoli® Storage Manager (TSM), formerly known as ADSTAR Distributed Storage Manager (ADSM),
provides a backup function for z/OS UNIX clients. There are two types of backup: incremental, in which
all new or changed files are backed up; and selective, in which the user backs up specific files.

Backup can be performed automatically or when the user requests it. The user can initiate a specific
type of backup or start the scheduler, which will run whatever action the administrator has scheduled
for the user's machine.

• From the shells, you can manually back up data by using the TSO/E OGET command to copy files into an
MVS sequential data set, partitioned data set, or partitioned data set extended (PDSE) that you know is
backed up. To simplify archiving multiple files, the pax or tar utilities can be used to consolidate

Working with files 211

individual component files into a single archive file that can then be copied to an MVS data set. pax and
tar can write the archive directly to an MVS data set, eliminating the need to copy the archive manually
with OGET. For more information about using pax or tar and OGET to backup and restore file from the
shell, see “Backing up and restoring files from the shell” on page 212.

You can use the cron utility to automatically start running pax or tar commands at a specified time.

After the files are in an MVS data set, you can load the data set to a tape. Conversely, you can load files
from a tape into an MVS data set and then copy them into the file system. For more information, refer to
“Transporting an archive file on tape or diskette” on page 270.

Backing up and restoring files from the shell
This information describes how to use the pax or tar utilities to back up and restore files. The purpose of
both utilities is to store the data and attributes of one or more component files into a single file, referred to
as the archive file. pax is considered to be the standard utility for managing archive files, replacing tar;
therefore, pax is used as the default utility in the examples that follow. However, tar is still widely used,
and in the z/OS environment provides practically equivalent function. Therefore, the corresponding tar
commands are also shown.

Both pax and tar support multiple archive formats and options that allow a greater or lesser degree of
file characteristics to be preserved. The USTAR format allows the most information to be saved, therefore
it is used as the default format in the examples that follow. For more information about the USTAR and
other archive formats, refer to z/OS UNIX System Services Command Reference. Because both pax and
tar can read and write archives in USTAR format, either utility can be used to restore an archive that was
created by the other. The significant difference between the two utilities is that only pax can perform
code page conversion on files during creation of, or extraction from, an archive. Users of tar can use the
iconv utility to perform the same conversion on files as a separate step.

Both pax and tar support inline compression and decompression of files. Because compressed archives
occupy an average of 50-60% percent of the uncompressed archive, many of the examples shown here
use compression. Note that compressed archives are not guaranteed to be portable to other UNIX
systems.

Archives can be copied to an MVS data set using the TSO/E OGET command and later copied back to the
file system using the TSO/E OPUT command. For OS/390® Release 8 and later, pax and tar can read and
write archives that reside in an MVS data set, making it unnecessary to first manually move files between
the file system and MVS using OGET or OPUT.

pax and tar support file names and link names that exceed 100 characters in length. The utilities remain
compatible with other UNIX systems and with previous versions of OS/390.

The remainder of this topic describes the following specific steps for backing up and restoring files to and
from an MVS data set and performing other related archive management tasks.

• Backing up a complete directory into an MVS data set
• Restoring a complete directory from an MVS data set
• Viewing the contents of an archive
• Converting between code pages
• Appending to an existing archive
• Storing selected files into an archive
• Restoring selected files from an archive
• Appending to an existing archive
• Backing up selected files by date

These examples demonstrate the most common tasks related to backing up and restoring files, and do
not attempt to describe all of the options of the pax and tar utilities. See z/OS UNIX System Services
Command Reference for a complete description of pax and tar.

212 z/OS: UNIX System Services User's Guide

Backing up a complete directory into an MVS data set
To back up the complete directory /u/project, including the subdirectories and their contents, into a
compressed archive stored in the MVS data set 'PROJECT.ARCHIVE', enter the following commands:

 cd /u/project
 pax -wzvf /tmp/project.pax.Z ./
 tso "oget '/tmp/project.pax.Z' 'PROJECT.ARCHIVE' binary"

Note:

1. The pax command can write directly to the MVS data set; you can skip the OGET command by
specifying the MVS data set on the pax command:

pax -wzvf "//'PROJECT.ARCHIVE'" ./

2. The equivalent tar commands are:

tar -cUzvf /tmp/project.pax.Z ./

To write directly to MVS (OS/390 Release 8 or later):

tar -cUzvf "//'PROJECT.ARCHIVE'" ./

3. You change to the current directory first in order to simplify the pax/tar command, and so that the
files are stored in the archive using a path name that is relative to the current directory. This simplifies
the task of restoring the archive later to a different directory. The "./" is used rather than an asterisk
to collect any component files that begin with "." in the current directory.

4. The archive is written to a directory that is not in the source path that is being archived, in order to
prevent pax/tar from trying to store the archive within itself. Doing so can cause pax/tar to loop
infinitely during creation, and can result in corrupted files during restore.

5. Naming archives with a suffix of "pax.Z" (or "tar.Z") is not required by pax/tar, but is done as a
convention to identify them as pax or tar archive files. The ".Z" is used to identify a compressed file.

6. The -z option is used to turn on compression, and is not required.
7. The -v option is used to display the names of files as they are being stored, and is not required.

Restoring a complete directory from an MVS data set
To restore the directory backed up in the previous example to /u/project_old, enter the following
commands:

tso "oput 'PROJECT.ARCHIVE' '/tmp/project.pax.Z binary"
cd /u/project_old
pax -pe -rvf /tmp/project.pax.Z

Note:

1. The pax command can read an archive directly from an MVS data set; you can skip the OPUT
command by specifying the MVS data set on the pax command:

pax -pe -rvf "//'PROJECT.ARCHIVE'"

2. The equivalent tar command is:

tar -p -xvf /tmp/project.pax.Z

To read directly from MVS (OS/390 Release 8 or later):

tar -p -xvf "//'PROJECT.ARCHIVE'"

3. The -pe option for pax and the -p option for tar are used to restore the original owner, group, modes,
and extended attributes. If you do not have the appropriate privileges to restore these, warning

Working with files 213

messages are generated. These options are not required to restore the component files and can be
omitted. For tar, the -o option is also used to disable restoring the owner and group.

4. pax and tar automatically detect the archive format and whether the archive is compressed, so the -
z option for pax and, for tar, the -U option is not required. If these options are used, pax/tar fails if
the archive is not compressed or not in USTAR format.

5. The -v (verbose) option is used to display the names of files as they are being restored, and is not
required.

6. Component files can be renamed during extraction by pax using the -i or -s option.

Viewing the contents of an archive
To view the contents of the /tmp/project.pax.Z archive created in the previous step, enter one of the
following commands:

To list only the names of component files:

pax -f /tmp/project.pax.Z

To list the contents in a verbose format similar to "ls -l":

 pax -vf /tmp/project.pax.Z

For OS/390 Release 7 and later, to list the extended attributes in a verbose format similar to "ls -E":

pax -Ef /tmp/project.pax

Note: The equivalent tar commands are:

• To list only component files: tar -tf /tmp/project.pax.Z
• For a verbose list: tar -tvf /tmp/project.pax.Z
• For extended attributes (OS/390 Release 7 or later):

 tar -tEf /tmp/project.pax.Z

Converting between code pages
Archives are often used to move files between UNIX systems. When an archive contains text files, it is
frequently the case that the file must be converted from the source system's default code page to the
target system's code page. You can do this by using the iconv utility on each file before storing it in an
archive or after restoring it from an archive. The pax utility, however, provides an inline code page
translation option, -o that can simplify this task. For example:

• To convert component files from EBCDIC (IBM-1047) to ASCII (ISO8859-1) when storing them in an
archive:

pax -o to=iso8859-1 -wzvf /tmp/project.pax.Z ./

• To convert component files from ASCII (ISO8859-1) to EBCDIC (IBM-1047) when extracting them from
an archive:

pax -o from=iso8859-1 -pe -rzvf /tmp/project.pax.Z

Note:

1. The -o option allows both a "from" and a "to" code page to be specified on the same command. If a
"from" or "to" codepage is not specified, pax assumes it to be EBCDIC (IBM-1047).

2. For more information about the code sets supported for this command, see the Coded Character Set
Conversion Table in z/OS C/C++ Programming Guide.

Converting archives that contain text and non-text component files. Archives often contain both text
and non-text files. Examples of non-text files are image files, such as JPGs and GIFs, and other pax/tar

214 z/OS: UNIX System Services User's Guide

archives. When the -o option is specified, pax converts all files, regardless of type. This corrupts non-text
files. The general approach for overcoming this limitation is to run pax two or more times against the
same archive, extracting component files in groups of text and non-text types. Whether it is easier to
identify (by file name) text files or non-text files will determine how you approach this.

For example, suppose you wish to restore the archive mywebsite.pax, which consists of HTML files (text
files) and JPG files (JPEGS, non-text image files) and was created on a system whose default code page is
ASCII (ISO8859-1), into the directory /u/website. Assume that the majority of the files are HTML files
and that the archived files represent several levels of subdirectories.

First, restore the entire archive using the -o option:

pax -rvf mywebsite.pax -o to=IBM-1047

This extracts and converts all component files. The extracted non-text JPEG files would be corrupted
because they were also converted. The next step would be to re-extract the JPG files without the -o
option. The pax option allows you to specify a "pattern" that will be used to extract only those files that
match the pattern. However, because of the multiple subdirectories, there is no way to create a pattern
that would match every JPG in each subdirectory. Instead, a list of file names to be extracted must first be
created and then used as the pattern for the pax command to extract the files. Issuing the following
command in the z/OS shell would accomplish this:

pax -rvf mywebsite $(pax -f mywebsite.pax | grep -i JPG$)

This command consists of two parts:

pax -rvf mywebsite $()

and

pax -f mywebsite.pax | grep -i JPG$

The first part is simply the regular pax command for extracting files from an archive. The $() expression
says to first run the command between the parentheses and substitute the results in place. The second
part is the command that generates a list of file names in the archive that end in "JPG" (or any mixed-case
variation).

The previous example shows one approach. In general, for any archive, the breakdown of text to non-text
files and the uniqueness of the names that identify each type dictate the manner and order in which the
files are extracted. For example, we could have reversed the process by first extracting all files without
using the -o option, and then re-extracting the HTML files on the second command using the -o option to
convert the files

Appending to an existing archive
To add additional files and directories to a previously created uncompressed archive, use the -a (append)
option.

Example: To add the file oops.forgot to the existing archive allfiles.pax, issue: :

 pax -awvf allfiles.pax oops.forgot

Result: The file oops.forgot is added to the end of the archive. If a file with the same name already exists
in the archive, it will not be overwritten or replaced.

Note:

1. You can append directly to archives in sequential MVS data sets only. pax and tar do not support
appending to archives that reside in partitioned MVS data sets.

2. The equivalent tar command is:

tar -rvf allfiles.pax oops.forgot

Working with files 215

Backing up selected files by date
The following examples pertain to the z/OS shell only, and demonstrate how to back up selected files that
may have been modified within a specified number of days. To do this you create a "find" command that
returns the list of files that meet the specified criteria, and then use the output from this command as the
list of files input to pax.

Example: To back up all files in the directory /u/source that have been modified in the last week, issue:

pax -wzvf backup.pax.Z $(find /u/source -type f -mtime -8)

Example: To back up all files in the directory /u/usrtools/ that have not been accessed in the last 100
days, issue:

pax -wzvf backup.pax.Z $(find /u/usrtools -type f -atime +100)

Note: The tar equivalent for the pax portion of the previous commands is:

tar -czUvf backup.pax.Z

Listing process IDs of processes with open files
It is often helpful to know which processes have open files. This information can be provided with the
fuser utility.

The fuser utility lists the process IDs of all processes on the local system that have one or more named
files open.

The syntax of the command is as follows:

fuser [-cfku] file

file is the path name of the file for which information is to be returned, or, if the-c option is used, the path
name of a file on the file system for which information is to be reported.
Option

Description
-c

Reports on all open files within the file system of which the specified file is a member.
-f

Reports on only the named files. This is the default for this command.
-k

Sends the SIGKILL signal to each local process. Note that only a superuser can terminate a process
that belongs to another user.

-u
The user name associated with each process ID is written to standard error.

216 z/OS: UNIX System Services User's Guide

Chapter 18. Handling security for your files

Each user has user ID (UID) and group ID (GID) numbers that are set when the user is defined to the
system. A user always belongs to at least one group—for example, a department—and each group that
uses the system is assigned a GID. The system uses the UID and GID to identify the files and processes
that a user may use. When you create a directory or a file, it is automatically associated with your UID, and
its GID is set to the owning GID for the parent directory (the directory it is in).

There are three classes of users whose access you can control with the permission bits (ACLs allow
access control for any user or group):

• Owner (the owner of the file or directory whose UID matches the UID for the file)
• Group (a member of the group whose GID matches the GID for the file)
• Other (anyone else)

You control access to a file and directory that you own through its permission bits. (Taken together, the
permission bits are often called the mode.)

In this topic, we discuss:

• Default permissions set by the system
• Changing permissions for files and directories
• Using the sticky bit on a directory to control file access
• Auditing file access
• Displaying file and directory permissions
• Setting the file mode creation mask for programs
• Changing the owner ID or group ID associated with a file
• Temporarily changing the user ID or group ID during execution
• Displaying extended attributes
• Using access control lists (ACLs) to control access to files and directories

Default permissions set by the system
When you first create a file or directory, the system sets default read, write, and execute (rwx)
permissions. The meanings of the three permissions differ somewhat for a file and a directory:

Permission Notation Meaning

read r Directory: Permission to read, but not search, contents.

File: Permission to read or print contents. To run a shell
script, you need both read and execute permission.

write w Directory: Permission to change the directory, adding or
deleting members.

File: Permission to change the file, adding or deleting data

execute x Directory: Permission to search a directory. Usually r and x
are used together.

File: Permission to run a file—that is, enter it as a command.
Typically this permission is used for shell scripts and for files
containing executable programs. (To run a shell script, you
need read and execute permission.)

© Copyright IBM Corp. 1996, 2018 217

The following table shows the default permissions set by the system:

Using To create a Default permissions

mkdir shell command Directory owner=rwx
group=rwx
other=rwx

In octal form: 777

MKDIR TSO command Directory owner=rwx
group=r-x
other=r-x

In octal form: 755

JCL with no PATHMODE
specified

Directory or file owner=---
group=---
other=---

In octal form: 000

ISPF editor, OEDIT
command, oedit
command

File owner=rwx
group=---
other=---

In octal form: 700

vi editor File owner=rw-
group=rw-
other=rw-

In octal form: 666

ed editor File owner=rw-
group=rw-
other=rw-

In octal form: 666

Redirection (>) File owner=rw-
group=rw-
other=rw-

In octal form: 666

cp command File Sets the output file permissions to the input file
permissions.

OCOPY command File Permission bits for a new file are specified with the
ALLOCATE command, using the PATHMODE
keyword, prior to entering the OCOPY command. If
the PATHMODE keyword is omitted, the default is:

owner=---
group=---
other=---

In octal form: 000

218 z/OS: UNIX System Services User's Guide

Using To create a Default permissions

OPUT or OPUTX
command

File For a text file:

owner=rw-
group=---
other=---

In octal form: 600

For a binary file:

owner=rwx
group=---
other=---

In octal form: 700

For more information on octal numbers, see “Using octal numbers to specify permissions” on page 220.

Changing permissions for files and directories
You can use the chmod command to set or change permissions for your files and directories. To change
permissions, you must be the owner or a superuser. (If you are uncertain about ownership, use the ls -l
command and look for your TSO/E user ID.)

You can specify the chmod command like this:

chmod mode pathname

You can specify the mode in symbolic form or as an octal value. For more information on the chmod
command, see the chmod command description in z/OS UNIX System Services Command Reference.

Using a symbolic mode to specify permissions
A symbolic mode has the form:

[who] op permission [op permission …]

The who value is optional; it can be any combination of the following:
u

Sets owner (user) permissions.
g

Sets group permissions.
o

Sets other permissions.
a

Sets all permissions; this is the default.

The op part of a symbolic mode is an operator that tells chmod to turn the permissions on or off. The
possible values are:
+

Turns on a permission.
–

Turns off a permission.
=

Turns on the specified permissions and turns off all others.

Handling security for your files 219

To set the permission part of a symbolic mode, you can specify any combination of the following
permissions in any order:
r

Read permission.
s

This stands for set-user-ID-on-execution or set-group-ID-on-execution permission. See “Temporarily
changing the user ID or group ID during execution” on page 225 for more information.

t
This sets the sticky bit on, for a file or directory.

Directory: The sticky bit is set on for a directory so that a user cannot remove or rename a file in the
directory unless one or more of these conditions is true:

• The user owns the file.
• The user owns the directory.
• The user has superuser authority.

File: The sticky bit is set for frequently used programs in the file system, to reduce I/O and improve
performance. When the bit is set on, z/OS UNIX searches for the program in the user's STEPLIB, the
link pack area, or the link list concatenation. For information on copying a load module from the file
system into a data set, see “Copying an executable module from the file system” on page 265. See
Verifying that the sticky bit is on in z/OS UNIX System Services Planning for information on using the
sticky bit with daemons.

w
Write permission. If this is off, you cannot write to the file.

x
Execute permission. If this is off, you cannot execute the file.

X
Search permission for a directory; or execute permission for a file only when the current mode has at
least one of the execute bits set.

For example, to turn on read, write, and execute permissions, and turn off the set-user-ID and sticky bit
attributes for a file, enter the command:

chmod a=rwx file

You can specify multiple symbolic modes if you separate them with commas.

Using octal numbers to specify permissions
Typically, octal permissions are specified with three or four numbers, in these positions:

1234

Each position indicates a different type of access:

• In position 1 are the bits that set permission for set-user-ID on access, set-group-ID on access, or the
sticky bit. Specifying this position is optional.

• In position 2 are the bits that set permissions for the owner of the file. Specifying this position is
required.

• In position 3 are the bits that set permissions for the group that the owner belongs to. Specifying this
position is required.

• In position 4 are the bits that set permissions for others. Specifying this position is required.

Position 1

Specifying the bits in position 1 is optional. For position 1, you can specify these octal numbers:

220 z/OS: UNIX System Services User's Guide

0
Off

1
Sticky bit on

2
Set-group-ID-on execution

3
Set-group-ID-on execution and set the sticky bit on

4
Set-user-ID on execution

5
Set-user-ID on execution and set the sticky bit on

6
Set-user-ID and set-group-ID on execution

7
Set-user-ID and set-group-ID on execution and set the sticky bit on

Positions 2, 3, and 4

Specifying these bits is required. For each type of access—owner, group, and other—there is a
corresponding octal number:
0

No access (---)
1

Execute-only access (--x)
2

Write-only access (-w-)
3

Write and execute access (-wx)
4

Read-only access (r--)
5

Read and execute access (r-x)
6

Read and write access (rw-)
7

Read, write, and execute access (rwx)

To specify permissions for a file or directory, you use at least a three-digit octal number, omitting the digit
in the first position. When you specify three digits instead of four, the first digit describes owner
permissions, the second digit describes group permissions, and the third digit describes permissions for
all others.

If you are not setting the first octal digit, you can just specify 3 digits instead of 4. When the first digit is
not set, some typical 3-digit permissions are specified in octal this way:

Table 11: Three-digit permissions specified in octal

Octal number Permission Meaning

666
 6 6 6
 / | \
 rw- rw- rw-

owner (rw-)
group (rw-)
other (rw-)

Handling security for your files 221

Table 11: Three-digit permissions specified in octal (continued)

Octal number Permission Meaning

700
 7 0 0
 / | \
 rwx --- ---

owner (rwx)
group (---)
other (---)

755
 7 5 5
 / | \
 rwx r-x r-x

owner (rwx)
group (r-x)
other (r-x)

777
 7 7 7
 / | \
 rwx rwx rwx

owner (rwx)
group (rwx)
other (rwx)

Using the sticky bit on a directory to control file access
Using the mkdir, MKDIR, or chmod command, you can set the sticky bit on a directory to control
permission to remove or rename files or subdirectories in the directory. When the bit is set, a user can
remove or rename a file or remove a subdirectory only if one of these is true:

• The user owns the file or subdirectory.
• The user owns the directory.
• The user has superuser authority.

If you use the rmdir, rename, rm, or mv utility to work with a file, and you receive a message that you are
attempting an operation not permitted, check to see if the sticky bit is set for the directory the file resides
in.

Auditing file access
Using the chaudit command, you can specify which types of file access are audited by RACF. RACF
writes the audit information to system management facilities (SMF) record 80.

Only a file owner or a security auditor can specify if auditing is turned on or off, and when audit records
should be written for a directory or a file: for successful accesses, failed accesses, or for all accesses.

You can specify audits for read, write, and search or execute attempts. For each of these, you can specify
audits for successful access, failed access, or both. You can also set the audit flags off, so that audits are
not performed.

The default audit bits are set at file creation:

• The user-requested-audit flags are set to audit failed attempts to read, write, or execute. Only the file
owner or a superuser can specify user audit options.

• The auditor-requested-audit flags are set off (no auditing). To specify auditor audit options, you must
have security auditor authority.

See the chaudit command description in z/OS UNIX System Services Command Reference for a description
of the chaudit command. See the topic about specifying file audit options in z/OS UNIX System Services
Planning for a description of how a superuser or security auditor would use the chaudit command.

222 z/OS: UNIX System Services User's Guide

Displaying file and directory permissions
To display the permissions for the files and directories in your working directory, use ls -W. (The ls -l
command displays all the access permissions but does not display the audit permissions.) The display
format is:

drwxr-x--- fff--- 2 ELVIS 64MB 96 Jun 15 10:34 statrp
-rwx------ fff--- 1 ELVIS 64MB 107 Jul 10 07:45 jun93
-rwx------ fff--- 1 ELVIS 64MB 80 Aug 09 13:15 jul93
-rwx------ fff--- 1 ELVIS 64MB 150 Sep 15 10:45 aug93
drwxr-xr-x fff--- 2 ELVIS 64MB 96 Jun 17 09:05 dbappl
-rwxr-x--- fff--- 1 ELVIS 64MB 150 Jun 17 10:15 txn1

• First field: A string of 10 characters. The first character indicates the file type. The next 9 characters are
the permissions. For example:

-rwxr-xr-x

View them this way:

- rwx r-x r-x

– The first character indicates whether this is a file or directory.

- for a regular file (binary or text)
c for a character special file
d for a directory
e for an external link
l for a symbolic link
p for a named pipe (FIFO special file)

In the example, - indicates a regular file.
– The first set of 3 characters show the owner's permissions. In this example, the owner has read,

write, and execute permission (rwx).
– The second set of 3 characters show the group permissions. In this example, the group to which the

user belongs has read and execute permission (r-x).
– The third set of 3 characters show the other permissions. In this example, any other user can read the

file and execute it (r-x). If the sticky bit is on, you see a T or t in the final field (--T or --t).
• Second field: The audit settings. These 6 characters are actually two groups of 3 characters. The first

group of 3 describes the audit settings requested by a user; the second group describes audit settings
requested by a security auditor. The characters can be:

s to audit successful access attempts
f to audit failed access attempts
a to audit all accesses
- for no audit

In the example, fff---,

fff means failed read, write, and execute or search attempts to access the file are audited by the
user.
--- means read, write, and execute or search attempts to access the file are not audited by the
security auditor.

• Third field: The number of links to the file or directory.
• Fourth field: The owner's login name (TSO/E user ID).

Note: When files owned by user ID 0 (UID=0) are transferred from any UNIX-type system across an NFS
connection to another UNIX-type system, the user ID changes to -2 (UID=-2). On a z/OS UNIX system,
-2 is not a valid user ID; therefore, ls displays UID 4294967294 (the unsigned equivalent of -2).

Handling security for your files 223

• Fifth field: The name of the group associated with the file or directory.
• Sixth field: The size of the file, expressed in bytes.
• Seventh field: A date and time. For a file, this is the time the file was last changed; for a directory, it is

the last time a file was created or deleted in the directory.
• Eighth field: The name of the file or directory. If the file is a symbolic link, that also is indicated. See the

additional information for the filename lnk in this example:

l--------- 1 ELVIS SYS1 8 May 21 15:30 lnk -> /tmp/ehk
$

Setting the file mode creation mask
When a file is created, it is assigned initial access permissions. If you want to control the permissions that
a program can set when it creates a file or directory, you can set a file mode creation mask using the
umask command.

You can set this file mode creation mask for one shell session by entering the umask command
interactively, or you can make the umask command part of your login. When you set the mask, you are
setting limits on allowable permissions: You are implicitly specifying which permissions are not to be set,
even though the calling program may allow those permissions. When a file or directory is created, the
permissions set by the program are adjusted by the umask value: The final permissions set are the
program's permissions minus what the umask values restrict.

To use the umask command for a single session, enter:

umask mode

and specify the mode in either of the formats used by chmod: symbolic (rwx) or octal values. The
symbolic form expresses what can be set, what is allowed, while octal values express what cannot be set,
what is disallowed. For example, both of these commands set the same umask:

umask a=rx
umask 222

To display the mask,

• If you just enter umask, you see the mode displayed in octal values, indicating what cannot be set.
• If you enter umask -S, you see the mode displayed in symbolic form, indicating what can be set.

The shell's initial setting of the mask is 000, which means that read, write, and execute permission can be
set on for everyone. But the system-wide profiles provided with the product set the mask to 022.

Changing the owner ID or group ID associated with a file
The user might need to change the UID or GID for a file. To protect the data in a file from unauthorized
users, the system controls who can change the file access:

• To change the owner (UID) of a file, the superuser can enter a chown command.
• To change the group (GID) of a file, the superuser or the file owner can enter a chgrp command,

specifying either a RACF group name or a GID. The file owner must have the new group as his group or
one of his supplementary groups.

Superuser tasks are discussed in Using the BPX.SUPERUSER resource in the FACILITY class in z/OS UNIX
System Services Planning.

224 z/OS: UNIX System Services User's Guide

Temporarily changing the user ID or group ID during execution
An executable file can have an additional attribute, which is displayed in the execute position (x) when
you issue ls -l. This permission setting is used to allow a program temporary access to files that are not
normally accessible to other users. An s or S can appear in the execute permission position; this
permission bit sets the effective user ID or group ID of the user process that is executing a program to
that of the file whenever the file is run. The setuid and setgid bits are only honored for executable files
that contain load modules.
s

In the owner permissions section, s indicates that the set-user-ID (S_ISUID) bit is set and execute
(search) permission is set.

In the group permissions section, s indicates that the set-group-ID (S_ISGID) bit is set and execute
(search) permission is set.

S
In the owner permissions section, S indicates that the set-user-ID (S_ISUID) bit is set, but the
execute (search) bit is not.

In the group permissions section, S indicates that the set-group-ID (S_ISGID) bit is set, but the
execute (search) bit is not.

A good example of this behavior is the mailx utility. A user who is sending mail to another user on the
same system is actually appending the mail to the recipient's mail file, even though the sender does not
have the appropriate permissions to do this action. The mail program does.

Displaying extended attributes
The -E option on the ls shell command displays extended attributes. For more information about this
option, refer to “Executable modules in the file system” on page 180.

Using access control lists (ACLs) to control access to files and directories
Using access control lists (ACLs), you can control access to UNIX files and directories by individual users
(UIDs) and groups (GIDs). ACLs are used in conjunction with permission bits.

There are three kinds of ACLs:

• Access ACLs are ACLs that are used to provide protection for a file system object.
• File default ACLs are model ACLs that are inherited by files created within the parent directory. The file

inherits the model ACL as its access ACL. Directories also inherit the file default ACL as their file default
ACL.

• Directory default ACLs are model ACLs that are inherited by subdirectories created within the parent
directory. The directory inherits the model ACL as its directory default ACL and as its access ACL.

There are two kinds of ACL entries:

• Base ACL entries are permission bits (owner, group, other). You can change the permissions using chmod
or setfacl.

• Extended ACL entries are ACL entries for individual users or groups. Like the permission bits, they are
stored with the file, not in RACF profiles.

Additional access control mechanisms are allowed to further restrict the access permissions that are
defined by the file permission bits. Because ACLs can grant and restrict access, the use of ACLs is not
UNIX 95-compliant.

Handling security for your files 225

ACLs are supported by HFS, zFS, and TFS. It is possible that other physical file systems will eventually
support z/OS ACLs. Consult your file system documentation to see if ACLs are supported.

Setting up ACL support
Using access control lists (ACLs) in z/OS UNIX System Services Planning provides detailed information on
setting up and managing ACLs. It also explains the considerations involved when you are using ACLs in a
sysplex and how ACLs are used in file access checks. To add, delete, or update an ACL, or update the
permission bits, use the setfacl shell command. The getfacl shell command displays the contents of
an ACL. The ls with –l output will also indicate if extended ACL entries exist.

See ACL tasks and their associated commands in z/OS UNIX System Services Planning for a chart that
shows how various shell commands are used when working with ACLs. For complete information on the
commands involved, see z/OS UNIX System Services Command Reference.

226 z/OS: UNIX System Services User's Guide

Chapter 19. Editing files

When you are logged into the shell, you have a choice of editors to use to create and change files,
depending on which interface you are using:

• OMVS terminal interface:

– The full-screen ISPF editor, which you can invoke using the OEDIT or oedit command.
– The ed editor, a line editor
– The sed stream editor, a noninteractive editor. It is intended for systematic editing; you invoke the

editor with a file of editing commands and a target data file and it produces an edited target file, with
no user interaction.

• Asynchronous terminal interface:

– The vi editor, an interactive editor

If you are using NFS from your workstation, you can directly edit z/OS UNIX files with your workstation
editor of choice.

Using ISPF to edit a z/OS UNIX file
ISPF Edit provides a full-screen editor you can use to create and edit z/OS UNIX files. You can access ISPF
Edit in several ways:

• Using the oedit shell command
• Using the TSO/E OEDIT command at the TSO/E READY prompt or from the shell command line
• From the ISPF menu (if a menu option is installed)
• From the ISPF shell (accessed using the TSO/E ISHELL command)

Tip: If you know you will be using OEDIT or OBROWSE during a shell session, make your initial invocation
of the shell from ISPF. If you enter the OMVS command from ISPF, you can subsequently access OEDIT
and OBROWSE more quickly than if you had entered the OMVS command from TSO/E.

Using ISPF Edit, you can edit only regular files (not special files). You need read and write permission for
the file and search permission for any intermediate directories.

When you are working in MVS (TSO/E or ISPF), your home directory is the default working directory.

When you create a new file, you must have the appropriate permissions to add a new file to the parent
directory. When a file is created using ISPF Edit, its default permissions are:

owner = rwx
group = ---
other = ---

The octal number is 700.

ISPF Edit allows only one edit session at a time per file. It reads the entire file when the edit session
begins. At the end of the session, it replaces the original file with the edited file.

During an ISPF Edit session, you can use these types of commands:

Type of commands Usage notes

Scrolling commands You can use commands to scroll the data up, down, left, or right.

© Copyright IBM Corp. 1996, 2018 227

Type of commands Usage notes

Line commands You perform line editing by entering a line command directly on the line
number of the affected line. For example, to delete a line, you enter D on the
line number; to repeat a line, you enter R on the line number. You can enter
line commands for several lines at the same time.

Primary commands To perform general editing tasks, you enter primary commands at the
command line on the panel. For example, you can use the FIND command to
scan data for a specific character string. If you entered:

FIND printf(

on the command line, your cursor moves to the next occurrence of printf(.
Likewise, you can enter the CHANGE command to make global changes within
a file.

Example: To change all instances of CRTL to C-RTL, issue:

CHANGE CRTL C-RTL ALL

External data
commands

While you are editing one file, you can use external data commands to work
with another file, a sequential data set, or a member of a partitioned data set
or PDSE—moving data to or from the file you are editing. ISPF Edit provides
five external data commands: COPY, MOVE, REPLACE, CREATE, and EDIT.

To end an edit session:

• Saving all changes, enter the END command or press <F3>.
• Without saving any changes, enter the CANCEL command.

When you end the edit session, you go back to where you were when you began it: on the entry panel, on
an ISPF command line, at the TSO/E READY prompt, or at the shell prompt.

All you ever wanted to know about ISPF Edit

The discussion in this topic is an introduction to ISPF Edit. For detailed information about ISPF Edit, use
the online help facility or refer to z/OS ISPF Edit and Edit Macros.

Using the vi screen editor
The vi editor is available if you login to the shell using rlogin or telnet. It is not available if you login
using the OMVS command. The vi editor is a full-featured text editor with the following major features:

• Full-screen editing and scrolling capability
• Separate text entry and edit modes
• Global substitution and complex editing commands using the underlying ex commands.

This overview just introduces some fundamentals to help you get started. For more information, see
Appendix A, “Advanced vi topics,” on page 275 and the vi command description in z/OS UNIX System
Services Command Reference.

Basic principles
To begin using vi, you type the command:

vi filename

228 z/OS: UNIX System Services User's Guide

where filename is the name of a file you want to edit. This can be an existing file, or it can be a new file
that you want to create.

The vi command begins a vi session. In a vi session, you enter input that creates or changes the
contents of the file specified on the command line. vi reads and uses the input you type until you quit
your vi session.

In a vi session, you are always in one of two modes:

• Insert Mode, in which everything you type is taken as text input. vi displays text on the screen as you
enter it. Eventually, vi stores this text in a file.

• Command Mode, in which vi interprets everything you type as a command to change the text in some
way. Usually, commands do not appear on the screen—you just see the effects of the command. For
example, if you enter the command to delete a line of text, you see the line disappear, but you never see
the delete line instruction that you actually typed.

To switch from Insert Mode to Command Mode, simply press the key marked <Esc>. If you are not sure
which mode you are in, press <Esc> several times. This always brings you back to Command Mode.

To delete a character, you must be in Insert Mode. Pressing <Backspace> deletes the last character you
typed; pressing <Backspace> twice deletes the last two characters, and so on. vi usually does not
immediately delete these characters on the screen—it just backs up the cursor so that anything you enter
is typed over the characters that were there. When you leave Insert Mode, vi adjusts the screen to
remove any characters that were deleted by <Backspace> and not over-typed.

To quit a vi session, do one of these:

• :wq to save your changes and quit vi
• :q! to quit without saving your work

A simple vi session
This information shows you how to edit a simple text file. Try it to get the feel of using vi. You can edit the
text file:

vi1.txt

which is supplied as part of the z/OS shell. It is in the directory /samples. To do this, copy this file to
current working directory:

cp /samples/vi1.txt vitest

Now, begin your vi session by typing:

vi vitest

vi clears the screen, then displays the contents of the file. , vi also displays:

"vitest" 30 lines, 668 characters

This tells the name of the file being edited and how big it is.

The cursor is positioned at the beginning of the file. Use the keys listed in Table 12 on page 229 to
position the cursor anywhere on any line in the file:

Table 12: vi editor: Positioning the cursor

To move the cursor: Press

Down a line j or ↓ (the Down arrow key)

Up a line k or ↑ (the Up arrow key)

Left along a line h or ← (the Left arrow key)

Editing files 229

Table 12: vi editor: Positioning the cursor (continued)

To move the cursor: Press

Right along a line l or → (the Right arrow key)

Note: The arrow keys do not work on all terminals.

To experiment a bit more, move the cursor to the beginning of the first line in the file, then press 5
followed by →. You do not see the 5 displayed anywhere—but when you press →, you see the cursor move
five characters to the right. As a general rule, when you type a number followed by an action, vi repeats
the action that number of times.

By the way, ask yourself if you are in Insert Mode or Command Mode. You must be in Command Mode
because the characters you type (for example, the 5) do not appear on the screen. When you start a vi
session, you always begin in Command Mode.

Adding text
The simplest action you can perform is adding text to what is already on the screen. Move the cursor to
the blank line following:

And frightened Miss Muffet away.

The cursor should be at the first position in the blank line. Now type a. Because you are in Command
Mode, this is taken to be a command, not text. The a command tells vi to begin adding to the text that is
already on the screen. If you now type:

Little Boy Blue

you can see the characters appear on the line. The a command switches from Command Mode to Insert
Mode. You can now see what you are typing.

Press <Enter> at the end of the line. The bottom part of the screen moves down to make a new blank line
after the line you were typing. Keep typing more lines:

Come blow your horn
The sheep's in the meadow,
The cow's in the corn.

You see that the bottom part of the screen keeps moving down to make more room for what you are
typing. After the a command, the text that you type is added into the middle of existing text.

When you have typed the last line, press <Enter> to make a new blank line, then press <Esc>.
<Esc>switches from Insert Mode back to Command Mode. Now, vi interprets what you type as
commands again. If you type 4 followed by ↑, the cursor moves up four lines to the beginning of the text
you just typed in. The 4 does not appear on the screen when you type it, because command input is not
usually displayed.

Move the cursor to the B at the beginning of the word Blue in the text you have just typed. Press a to add
more text, then type the letter l. The l is added after the B and the rest of the text on the line moves over
to make room for the new character. This shows that a adds text after the current cursor position.

Press <Backspace>. The cursor backs up one space. Press <Esc>to return to Command Mode. The l
disappears when you leave Insert Mode, and vi adjusts the screen to get rid of characters deleted by
backspacing.

The Little Boy Blue rhyme that you have just added to the file follows the previous nursery rhyme
immediately. The file would look better with a blank line separating the two rhymes. Figure out how to put
in this blank line, and do it.

230 z/OS: UNIX System Services User's Guide

Moving the cursor up and down the screen
You already know how to move the cursor up and down; however, this can be a slow process if you have a
large file that you want to move through quickly. To speed this process up, vi offers several commands
that can jump the cursor up or down many lines at a time.

In Command Mode, use the following commands:
Command

Moves the cursor:
H

To the upper left hand corner of the screen. H stands for High and it moves the cursor as high on the
screen as it can go.

L
To the bottom of the screen. L (uppercase) stands for Low.

M
To the middle of the screen. M stands for Middle. Experiment with these commands to see how they
move the cursor.

Moving up and down through a file
While you are editing a file, you can move through it one line at a time, several lines at a time, or screens
at a time. You can use these commands to move up and down through a file:
Command

Moves the cursor:
<Ctrl-D>

Down (or forward) half a screen. The cursor stays where it is -- the text moves underneath it.
<Ctrl-F>

Down (or forward) almost a full screen. This lets you move forward through the file very rapidly.
<Ctrl-U>

Up (or backwards) half a screen.
<Ctrl-B>

Up (or backwards) almost a full screen.

If you move forward far enough through vitest, you will see a number of lines that are blank except for a
tilde (~) as the first character. These lines are actually beyond the end of the file -- the file ends with the
line:

And the mome raths outgrabe.

vi could just show an empty screen after this last line, but then you would not know if the screen was
empty because you had reached the end of the file or if the file just contained a lot of blank lines;
therefore, vi uses ~ to mark lines that are past the end of the file.

Moving the cursor on the line
You can also move the cursor by whole word boundaries, using word-motion commands. Make sure that
you are in Command Mode (press <Esc>). 0 and $ let you move back and forth on a line quickly.
Command

Moves the cursor:
^ or 0

To the beginning of the current line (to the first nonblank space). The command 0 is short for 0|,
which moves the cursor to column number 0.

$
To the end of the current line

$ stands for the end of the line in a number of vi commands.

Editing files 231

Go to the beginning of a line, and press w. The cursor jumps forward to the beginning of the next word on
the line. w stands for word and it moves the cursor forward one word. If you keep pressing w, the cursor
keeps jumping forward. When you jump forward from the last word in the line, you go to the first word in
the next line. If you precede w with a number (as in 5w), the cursor jumps forward that many words.

Typing b is like typing w, except that you go back a word instead of forward. If you go back from the first
word on a line, you get to the last word on the previous line. If you precede b with a number (as in 3b), the
cursor jumps backward that many words.

If the cursor is in the middle of a word, typing e moves the cursor to the end of the word. For example, if
the cursor is in the middle of the word slithy, typing e moves the cursor to the last letter in the word. If
the cursor is already on the last letter of a word, typing e moves the cursor to the end of the next word.

To move the cursor between words including punctuation (that is, punctuation is considered to be a word),
use the following commands:
Command

Moves the cursor:
e

To the end of the current word
w

To the beginning of the next word
b

To the beginning of the previous word

To move the cursor between words ignoring punctuation (that is, punctuation is skipped), use the
following commands:
Command

Moves the cursor:
E

To the end of the current word
W

To the beginning of the next word
B

To the beginning of the previous word

Moving to sentences and paragraphs
To move between sentences and paragraphs, use the following commands:
Command

Moves the cursor:
)

To the beginning of the next sentence
(

To the beginning of the preceding sentence
}

To the beginning of the next paragraph
{

To the beginning of the preceding paragraph

These commands can also be preceded by a number to change the effect of the command. For example,
3) moves the cursor forward 3 sentences.

232 z/OS: UNIX System Services User's Guide

Deleting text
There are several commands that delete text from the screen. All of these begin with the letter d. After
the d comes a letter indicating what you want to delete. Usually this letter is based on one of the cursor
movement commands. For example:
Command

Action
d$

Deletes text from the cursor's current position to the end of the line.
dd

Deletes the entire line containing the cursor.
dL

Deletes text from the cursor's current position to the bottom of the screen.
dw

Deletes text from the cursor's current position to the beginning of the next word.
de

Deletes text from the cursor's current position to the end of a word. If the cursor is in the middle of a
word, de deletes to the end of the same word; if the cursor is at the end of a word, de deletes to the
end of the next word.

In the same way, d followed by → or ← (l or h) can delete a single character. Try both instructions and see
which character gets deleted.

If you delete something by accident, you can undo the deletion by typing u (lowercase). Try this now. Type
dH. What happens? Now type u and see the deleted text return.

A number followed by a delete command repeats the command that number of times. For example:

• 5dw deletes five words
• 10dd deletes ten lines

Changing text
To change existing text, use the c command the same way you use d. c is a combination of d and a—it
deletes text, then begins to append text to replace what was deleted.
Command

Action
c$

Lets you change everything from the cursor's current position to the end of the line.
cL

Lets you change everything to the end of the page.
cc

Lets you change all of the current line, regardless of the cursor position.

Go to the beginning of the first line of vitest and type c$. vi puts a $ at the end of the line. The $ marks
the end of the block of text that vi intends to change. If you now begin typing something like The rain
in Spain, you type over the text that was previously on the line. If you keep typing, you eventually type
over the $. The $ was never there -- it was just a marker to show the block of text to be replaced.

After a c command, the text you type shows up on the screen. This means that c puts you in Insert Mode.
When you finish typing replacement text, you must press <Esc> to return to Command Mode.

You can enter any amount of text to replace existing text. For example, c$ only gets rid of part of a line,
but you can enter many lines of replacement text.

Undoing a command
If you make a change and then realize it was in error, you might still be able to correct it.

Editing files 233

Command
Action

u
Undoes the last command entered.

U
Undoes all changes made to the current line.

Saving a file
When you finish editing text, you must save your work in a file. Until you save your work, your text is on the
screen but it is not recorded in any usable way. When you quit vi, your work disappears unless it is saved.

If you started your vi session with vi filename, it is easy to write the edited text back into the same
file. In Command Mode, just type:

:w

and press <Enter>. When you type the colon, it appears at the very bottom of the screen. The w also
appears . When you press <Enter>, there is a short pause and then vi displays some statistics about the
saved text: the name of the file, and the number of lines and characters saved.

If you want to save your changes and quit vi, enter:

:wq

If you want to save your text in a different file, type:

:w newfilename

and press <Enter>. Again, this appears . After you save your work, you can quit vi by typing:

:q

Normally, vi does not let you quit before saving; if you do, you lose everything you have done since the
last time you saved. If you really want to quit vi without saving your work, type:

:q!

If the file system that you are attempting to save your file to is full, you will see the following message:

FSUM7971 Write error (out of space?)

At this point, you should issue a command to save your file to a new file system where space is available.
This can be done by typing:

:w newfilesystem/newfilename

where newfilesystem is the name of another file system that has space available, and newfilename is the
name you wish to call the file.

Once the original file system has space available, you can safely copy the file back to that location.

Searching for strings
In a large document, searching for a particular text string can be very time consuming. The / command
prompts for a string to search for in the file. When you press <Enter>, vi searches the file for the next
occurrence of the string you entered.

To try searching for a string, first move to the top of vitest. Then type:

/Blu

and press <Enter>.

234 z/OS: UNIX System Services User's Guide

As soon as you enter /, it is displayed on the bottom of the screen. As you type the string Blu, it is
echoed . You can use <Backspace> to fix mistakes as you type the search string. After you press <Enter>,
the cursor moves to the first occurrence of the string.

The n command searches for the next occurrence of the last string you searched for. Try it now by
entering:

n

The cursor should move to the next occurrence of the string, which is the th in the word with. You can
also use N like n to search the other direction through the file.

If you just type a slash without anything after it, vi looks for the most recent word or phrase you searched
for.

Searching backwards through a file

To specify a search string for a backward search through the file, use the ? command in the same way
as /. If you just type a ? without anything after it, vi searches backwards for the most recent word or
phrase you searched for. When you search backwards, the n command moves the cursor backward to the
next occurrence of the string, and the N command moves the cursor forward.

Case-sensitive searching

When you type in characters after a slash or question mark, make sure you enter them in the correct case.
For example, ask vi to search for IN, and type the word in uppercase. You will see that vi prints the
message Pattern not found . As it turns out, this file does not contain the word IN in uppercase,
although it has the word several times in lowercase.

Notice that the message used the word Pattern. In a vi command, anything after a slash or question
mark is called a pattern.

Special search characters

In order to make searching more useful, vi gives special meanings to several characters when they are
used in patterns. For example, the circumflex or caret character (^) stands for the beginning of a line.
Move the cursor to the next line and type:

/^All

vi will look for the word All occurring at the beginning of a line.

The end of a line is represented by the dollar sign ($). Move the cursor to the next line and type:

/plum$

You will see that vi searches forward for a line that ends in the word plum.

Inside patterns, the dot (.) stands for any character. For example, move the cursor to the top of the file
and type:

/t.e

You will see that the cursor moves to the word the. Type / over and over, and you will see the cursor keep
jumping forward to any sequence of three letters that starts with t and ends in e. Were you surprised that
the cursor jumped into the middle of the word slithey? vi finds character strings, even when they are in
the middle of larger words.

Inside patterns, a dot followed by an asterisk (.*) stands for any sequence of zero or more characters. For
example, type:

/^A.*g$

You will find the next line that begins with the letter A, ends with the letter g and has any number of
characters in between.

Editing files 235

Character
Stands for:

^
Beginning of the line

$
End of the line

.
Any character

.*
Any sequence of zero or more characters

vi gives special meanings to several other characters inside patterns. For complete details, see Regular
expressions (regexp) in z/OS UNIX System Services Command Reference. A regular expression is the
POSIX name for a pattern; here we use the word pattern because it is more descriptive.

What happens if you want to search for a character that has a special meaning in patterns? For example,
suppose you want to search for the string 2.3*25 somewhere in a file. If you just type:

/2.3*25

vi will think the 3* stands for zero or more occurrences of the digit 3, not the * character. In such cases,
put a backslash (\) in front of any characters with special meanings, as in the example:

/2\.3*25

Notice that we had to put a backslash in front of the dot as well as the asterisk; both have a special
meaning in patterns.

By default, all searches in vi wrap around from the bottom of the file to the top. Similarly, if you use
question marks to search backward through a file, the search will wrap around from the top of the file to
the bottom, if necessary.

Moving text
The first step in moving a block of text is to select text for moving. In fact, you already know how to do
this. The d command not only deletes a block of text, but also copies it to a paste buffer. Once in the paste
buffer, the text can be moved by repositioning the cursor and then using the p command to place the text
after the current cursor position.

To delete the first line of the file, move there and type:

dd

The line is deleted and copied into the paste buffer, and the cursor is moved to the next line in the file. To
paste the line following the current line, type:

p

To paste text before the cursor rather than after it, use the P (uppercase) command.

If you delete a letter or word size block, it will be pasted into the new position within the current line. For
example, to move the word came after the word spider, you could use the following command
sequence:

/came <Enter>
dw
/spider <Enter>
p

236 z/OS: UNIX System Services User's Guide

Copying text
You copy text in the same manner as you move it, except that instead of using the delete text command d,
you use the yank text command, y. The y command copies the specified text into the paste buffer without
deleting it from the text. It follows the same syntax as the d command. You can also use the shortcut yy
to copy an entire text line into the paste buffer, in the same way as dd.

For example, you can copy the first two lines of the file to a position immediately underneath them. To do
so, enter the following command sequence from the first line of the file:

2yy
j
p

Note that you must move down one line using j, or the two lines will be pasted after the first line rather
than after the second.

Other vi features
Here are a few more helpful vi subcommands:
J

Joins the following line to the current line
.

Repeats the last command
s

Substitutes the current character with the following entered text
x

Deletes the current character

Message: vi/ex edited file recovered
Have you received mail with this subject: "vi/ex edited file recovered" ? This is what the mail messages
look like:

From OMVS Mon Apr 29 13:58:50 1996
To: 1234567
Status: R
Subject: vi/ex edited file recovered.

Mon Apr 22 13:47:45 1996, the file

 NoFilename

that you were editing has been recovered.
You can retrieve most of your changes to this file
using the "-r" option or the ":recover" command of the
vi or ex editors. An easy way to do this is with the command

 vi -r NoFilename

This message is being sent to you because the exrecover command recovered text files from working
files created by ex or vi. When ex or vi is invoked, it first creates these working files in a temporary
directory so that it can recover the file being edited if any system errors occur or if the editor is otherwise
terminated abnormally.

When vi is invoked, it first creates files in /tmp so that it can recover the file being edited if any system
errors occur. When vi is invoked from OMVS, it creates its recovery files in /tmp but cannot continue.

The current default directory for temporary vi files (usually /tmp) may be implemented as a TFS. In this
case, all vi's temporary files that the exrecover daemon uses for recovery would be gone after a system
crash. The environment variable TMP_VI can contain a directory path name that can be specified by an
administrator as an alternative location for these temporary files. See “Using the TMP_VI environment
variable” on page 238 for more information.

Editing files 237

The exrecover command automatically recovers these files. By default, this command is started from
the /etc/rc file. In /etc/rc you will see these lines:

Invoke vi recovery
mkdir -m 777 /etc/recover
/usr/lib/exrecover

Every IPL, the /etc/rc script is run and the exrecover command is also run. exrecover goes through all
the recovery files that were left by the ex or vi editors. These files have names that begin with VI; three
of them are created for each vi command. exrecover creates directories in /etc/recover for each
userid, puts the recovered files there, and sends the user mail telling what it did.

Using the TMP_VI environment variable

An administrator can set the TMP_VI environment variable to the path name of an alternate location
where vi is to create its recovery files.

Guideline: This environment variable should be set by a system administrator rather than a user. If a user
sets the TMP_VI directory to something other than the name that exrecover recognizes as TMP_VI, the
user must manually run the exrecover daemon to allow the directory files to be converted to the
recoverable files that are used by vi (located in /etc/recover/$LOGNAME).

Restriction: A system administrator should not set TMP_VI to /etc/recover/$LOGNAME or to any
directory where a path name component is an environment variable with a user's value that is different
from the value of the init process—for example, $HOME.

The temporary vi files are converted into a form that is recoverable by vi when exrecover is run during
IPL. Because exrecover is issued during IPL, it is owned by the init process and, therefore, contains
different values for certain environment variables if those environment variables have been set.
Throughout the file system, there may be some temporary files that can only be converted by
exrecover. This conversion can be done manually by a system administrator to recover files owned by
all users or by individual users to recover their own files.

Stopping the mail messages

If no one at your installation intends to use vi, a superuser can get rid of the exrecover mail messages
as follows:

1. Edit /etc/rc
2. Comment out the line that says /usr/lib/exrecover. This stops the exrecover command from

running, so no new mail messages will be sent.
3. cd /tmp
4. rm VI*

If your installation has some users who will be editing with vi, then it's a little trickier. In this case, your
vi users will want the recovery capabilities of vi, so you do not want to remove the exrecover
command from /etc/rc.

Anyone can remove those /tmp/VI* files that were generated when users on dumb terminals tried vi. To
stop exrecover from sending new mail messages about those files:

1. Broadcast a message to make sure no one is using vi at the moment
2. cd /tmp
3. rm VI*

Deleting the old mail messages

If you want to delete only the mail messages sent by exrecover:

1. Enter

mailx

238 z/OS: UNIX System Services User's Guide

2. Use the mailx commands to read each message: Enter the number of the message
3. Enter

d

to delete that message.

To delete all your mail messages, issue:

1. rm /usr/mail/$LOGNAME

But be careful because this will delete all your mail messages.

Using the ed editor
Using the shell: The ed editor is a line editing program available in the shell for editing text files. When
you edit a file with ed, the file is copied into the edit buffer, a temporary storage area. You use various
subcommands to edit the text in the buffer. When you end your edit session, the contents of the buffer are
written to the file system, overwriting the previous contents of the file.

With ed, you work with one line in the buffer at a time. In this discussion, that position in the buffer is
called the current working line.

For more details about ed, see z/OS UNIX System Services Command Reference.

Creating and saving a text file
1. To begin editing a new file, enter:

ed filename

where filename is the name of a new file.
2. After you see the ?filename message, enter:

a

This indicates that you want to append lines.
3. Type your text. At the end of each line, press <Enter>. You can then enter more text.
4. When you have finished entering text, enter:

.

(a period) at the start of a new line.
5. To write the contents of the edit buffer to the file filename, enter:

w

After writing to the file, the shell displays the number of characters that were copied—for example,
746. This number includes blanks and newline characters appended to each line of text, which you
cannot see on the screen.

If you want to write to a file different from the original filename, specify a different filename when you
enter the w subcommand; for example:

w diffname

Entering the w subcommand does not change the contents of the buffer.
6. To exit the ed program, enter:

q

Editing files 239

This deletes the contents of the buffer.

Editing an existing file
To begin editing an existing file, enter:

ed filename

Your current working line is the last line in the file. If you want to change your position in the file before
you begin editing, see “Identifying line numbers and changing your position in the buffer” on page 240.

If you are already using ed, have finished editing one file and saved it with the w subcommand, and you
now want to edit another file, enter:

e filename

This erases the previous contents of the buffer and loads in the new file.

Identifying line numbers and changing your position in the buffer
To find out how many lines there are in a file, enter:

$=

To identify the line number of your current working line, enter:

.=

You can make a different line in the file your current working line and then identify its number.

To move the current working line forward a line at a time, press <Enter>. The text of the line is displayed.

To move the current working line backward a line at a time, enter:

–

(hyphen). The text of the line is displayed.

Changing position using numbers

To change the current working line to a different line in the file, enter:

n

where n is the number of the line you want to work with. The text of the line is displayed.

To move the current working line n lines forward, enter:

.+n

To move the current working line n lines backward, enter:

.–n

Changing position using a search string (regular expression)

If you don't know the number or position of the line you want to make your current working line, you can
locate a string (or regular expression) in the line. To search forward for one or more words or a string of
characters, enter:

/regexp/

where regexp is one or more words or a string of characters. The line containing the search string is
displayed and it is now your current working line.

240 z/OS: UNIX System Services User's Guide

To search backward for one or more words or a string of characters, enter:

?regexp?

where regexp is one or more words or a string of characters. The line containing the search string is
displayed and it is now your current working line.

Appending one file to another
If you want to append a file at the end of the file you are working on in the buffer, enter:

r filename

Or, if you want to read a file in after a specific line in the buffer, enter:

nr filename

where n is the number of the line in the file.

To display the contents of a file in the edit buffer, enter:

,p,

On your screen, each line of the file is displayed, for example:

,p,
Oh, you better watch out
You better not shout
You better not cry
I'm telling you why

Once you know the line numbers, you could insert the file scrooge after the line You better not cry.
Thus, you would enter:

3r scrooge

Displaying the current line in the edit buffer
When you enter subcommands, you identify the current working line with the symbol . (dot).

To display the current working line, enter:

p

To display the line number of the current working line, enter:

.=

Changing a character string
For changing text or correcting spelling errors, use the s (substitute) subcommand. When you enter the
subcommand, the line you are changing becomes your current working line. To display the line after you
make the change, enter the p (print) subcommand.

• To substitute text for the first matching string on the current working line, enter:

s/oldtext/newtext/

• To substitute text for the first matching string on a specified line, enter:

ns/oldtext/newtext/

where n is the number of the line.

Editing files 241

• To substitute text for the first matching string on more than one line, enter:

a1,a2s/oldtext/newtext/

where a1 is the number (or address) of the first line to be changed and a2 is the number of the last line
to be changed.

• To change every occurrence of a string on more than one line, enter:

a1,a2s/oldtext/newtext/g

where a1 is the number of the first line to be changed and a2 is the number of the last line to be
changed. g is the global operator.

To change every occurrence of a string on one line, enter:

ns/oldtext/newtext/g

g is the global operator.
• To delete a word or string, enter:

s/oldtext//

Inserting text at the beginning or end of a line
Use the s (substitute) subcommand and these two special substitution characters to insert text at the
beginning or end of a line:
^ (circumflex)

Inserts text at the beginning of a line
$ (dollar sign)

Inserts text at the end of a line

• To insert text at the beginning of the current working line, enter:

s/^/newtext

• To insert text at the beginning of a specified line, enter:

ns/^/newtext

where n is the number of the line. This line becomes the current working line.
• To insert text at the end of the current working line, enter:

s/$/newtext

• To insert text at the end of a specified line, enter:

ns/$/newtext

where n is the number of the line. This line becomes the current working line.

Deleting lines of text
Use the d (delete) subcommand to delete one or more lines of text. After you delete a line, the first line
following the deleted line (or lines) becomes the current working line. After a line is deleted, the
remaining lines in the buffer are renumbered.

• To delete the current working line, enter:

d

242 z/OS: UNIX System Services User's Guide

• To delete a specific line number, enter:

nd

where n is the line number.
• To delete more than one line, enter:

a1,a2d

where a1 is the number of the first line and a2 is the number of the last line.

Changing lines of text
To replace one or more lines with one or more new lines, use the c (change) subcommand. This actually
deletes the lines you want to replace and inserts the new lines.

1. Enter:

a1,a2c

where:

a1 is the number of the first line to be deleted.
a2 is the number of the last line to be deleted.

2. Type the new lines, pressing <Enter> at the end of each line.
3. End the insert by typing a . (period) on a line by itself.

Inserting lines of text
To insert one or more lines of new text into the edit buffer, use the i subcommand.

1. You can specify the subcommand in one of two ways, depending on how you want to identify the line
that the new lines are to be inserted before:

• If you know the number of the line that you want to insert the new lines before, enter:

ni

where n is the number of that line.
• To identify the line that the new lines are to be inserted before by words or a string of characters in

the line (known as a regular expression), enter:

/regexp/i

where regexp is one or more words or a string of characters.
2. Enter the new lines.
3. End the insert by typing a . (period) on a line by itself.

Copying lines of text
Use the t (transfer) subcommand to copy one or more lines within the edit buffer.

To copy one line, enter:

a1tn

where:

a1 is the number of the line to be copied.
n is the number of the line that the line is to be copied after.

Editing files 243

To copy a block of lines, enter:

a1,a2tn

where:

a1 is the number of the first line in the block of lines to be copied.
a2 is the number of the last line in the block of lines to be copied.
n is the number of the line that the lines are to be copied after.

To copy lines to the top of the edit buffer, use 0 as the line number for the lines to be copied after.

To copy lines to the bottom of the edit buffer, use $ as the line number for the lines to be copied after.

Moving lines of text
Use the m (move) subcommand to move a block of lines to a different position in the edit buffer. After the
text is moved, the last line in the block of lines becomes the current working line. Enter:

a1,a2mn

where a1 is the number of the first line in the block, a2 is the number of the last line in the block, and n is
the number of the line that the block of lines are to be moved after.

To move text to the top of the buffer, use 0 as the line number for the lines to be moved after.

To move text to the end of the buffer, use $ as the line number for the lines to be moved after.

Undoing a change
To undo a change, use the u subcommand. This subcommand undoes the changes made by the last
subcommand that changed the buffer. For the purposes of u, subcommands that change the buffer are: a,
c, d, g, G, i, j, m, r, s, t, v, V, and n.

Entering a shell command while using ed
To temporarily switch out of the ed program and run a shell command, enter:

!command name

Ending an ed edit session
When you have finished working with a file, you save the changes by entering:

w

To end the edit session, enter:

q

If you enter q without entering w to first save the buffer, the changes you have made are not saved.

Default permissions
When you create a file using the ed editor, its default permissions are:

owner=rw-
group=rw-
other=rw-

The octal number is 666.

244 z/OS: UNIX System Services User's Guide

Using sed to edit a z/OS UNIX file
Using the shell: Because sed is a noninteractive editor, you do not use it in an interactive session.
Instead, enter the sed command specifying a file that contains editing commands and a data file, and it
produces an edited target file with no user interaction. sed is intended for systematic editing, as opposed
to the usual editing-on-the-fly performed by interactive users.

sed subcommands are similar to those used with ed, except that sed commands view the input text as a
stream rather than as a directly addressable file. Each line of the file that contains editing commands has
up to two addresses, a single-letter command, possible command modifiers, and an ending newline
character.

For more details on sed, see the sed command description in z/OS UNIX System Services Command
Reference.

Editing files 245

246 z/OS: UNIX System Services User's Guide

Chapter 20. Printing files

If you are a workstation user, you are probably accustomed to having a printer close by, if not on, your
desk. In contrast, the MVS system intentionally screens the user from printer knowledge and uses a
printer resource pool. One facility provided to manage this pool is the System Display and Search Facility
(SDSF).

You can, of course, download z/OS UNIX files and print them at your workstation. However, it may be
more convenient to have print jobs sent to accessible Job Entry Subsystem (JES) printers directly by the
shell. In addition, you may want to use the large-volume printing facilities offered by MVS.

Formatting files for online browsing or printing
Using the shell: You can use shell commands to format a file for browsing or printing, and then later use
the lp command to send the formatted file to a printer.

If you want to format and print a file immediately, you can request this printing as a single piped
command.

To format a z/OS UNIX file, use the pr command; for example:

pr -2 report1

This command requests the shell to format for printing in two columns a file named report1, and send the
output to standard output (your workstation screen). The file appears on your screen in the format you
selected. There are many format options for the pr command; see the pr command description in z/OS
UNIX System Services Command Reference.

If, instead, you redirect standard output to a file named report2, you can later print the file by entering:

lp report2

This requests the printing of the formatted file in report2; because the dest option is not specified, the file
is sent to the default printer destination.

If you want to format a file and print it right away, you can join the requests using a pipe. (See “Using a
pipe” on page 69 for more information on using a pipe.) For example:

pr -2 report1 | lp

formats and prints the file report1.

To save the formatted output as well as print it, try:

pr -2 report1 | tee report2 | lp

This command formats report1 and pipes the formatted output to tee. tee writes the formatted output
to report2 and at the same time pipes report2 to the next command, lp, which sends the input to the
printer queue. The formatted output is saved in report2.

Printing requests in shell scripts
Including print requests in a shell script may limit the portability of the shell script, because printer
configuration options in other operating systems may differ. To minimize the work involved in porting the
shell script to another system, be sure to identify environment assumptions and aliases that may have
been used.

© Copyright IBM Corp. 1996, 2018 247

Printing with the lp command
Using the shell: You can use the lp command to send a previously formatted file to a JES printer:

lp filename

You can specify more than one file name with the command. The lp command uses existing JES printer
facilities. Because a default printer destination is assigned to you, you do not need to specify a destination
(with the -d dest option) when entering the lp command. However, you can specify a destination other
than the default by using the -d dest option. For -d dest, you can specify LOCAL for any printer or any of
the symbolic destination names your systems programmer defined for JES printers. These symbolic
names are defined locally.

Class is a frequently used option, and at your site there might be several different classes defined. For
instance, C may be designated the class for confidential information. Suppose that you want to print the
file temp.prt using the default printer destination and specifying class C; you would enter it in either of
these ways:

lp -d ,c temp.prt

lp -d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you must still include the
comma.

To specify the number of copies you want printed, use the -n option. For example,

lp -n 2 report2

requests the printing of two copies of the formatted file in report2 to the default printer destination.

If you have z/OS Print Server installed on your system, you will use the Print Server version of the lp
command.

Printing with TSO/E commands
Using TSO/E: Some printer services, such as printing a single file to multiple destinations, are not
available through the lp command. To print in TSO/E, you need to know:

• The TSO/E commands you can use to submit print jobs
• The printing options (class) you want to specify

Here are the steps:

1. If you are working in the shell, switch to TSO/E command mode by pressing the TSO function key.
2. If you want to print an MVS data set, skip to the next step. If you want to print a z/OS UNIX file, you

must first copy it into an MVS data set using the TSO/E OGET or OCOPY command. (See “Copying a
z/OS UNIX file into a sequential data set or PDS member” on page 257 for more information on
copying.)

Tip: Someone at your installation may have written an MVS command list (CLIST) or a REXX program
that you can enter as a TSO/E command for printing. The command list could include the OGET or
OCOPY command, and would let you specify such things as multiple destinations, special character
sets, and notification for a set of people.

3. You can format an MVS data set for printing using TSO/E commands. Possibly you will be using ISPF
panels.

4. Print the data set:

248 z/OS: UNIX System Services User's Guide

• To enter the request to print the formatted data set, for example, you might enter:

printds da(project1.list) class(c)

• To submit a print request to the MVS job queue, for example, you might enter:

submit jcl.cntl(print1)

For a print batch job request, the system returns a message confirming that the job request has been
received.

Checking the status of print jobs
If you submit a print job with a shell command, there is no way to check on the status of the job. (The
lpstat and cancel commands are not supported.) All output looks the same on the queue in terms of
job number. Print jobs could have different setups such as destination or class, but normally the only
difference is the number of lines, bytes, or pages and the time of day the output was available to print.

Note: The Print Server is included with z/OS. The Print Server, if enabled, replaces the lp command and
provides other commands, including lpstat and cancel.

If your operating system includes SDSF, you can use the SDSF panels to monitor and control a TSO/E or
batch print job, look at its output as it is running, check its completion, and release it to print.

For a batch job, the STATUS command can provide status if you specify the job name as your user ID
followed by one character (for example, MACNEILA). You cannot use the STATUS command for print jobs
that you ran using lp or PRINTDS. STATUS takes either no operands or one or more job names as
operands. If you use no operands, the system looks for jobs with names that start with your user ID
followed by one character. If you list a job name, it looks for that job name.

Requirement: If you use SDSF to view the output from a job where the job name was assigned using the
_BPX_JOBNAME environment variable, you must set the SDSF group function APPC to ON. If APPC is set
OFF, the assigned job name will not be displayed, and the jobs will differ only by job number. For more
information, see z/OS SDSF Operation and Customization.

Printing files 249

250 z/OS: UNIX System Services User's Guide

Chapter 21. Copying data between the z/OS UNIX file
system and MVS data sets

As shown in Figure 20 on page 251, you can copy data between the z/OS UNIX file system and MVS data
sets using z/OS UNIX shell commands cp and mv or the TSO/E commands OPUT, OPUTX, OGET, OGETX,
and OCOPY.

OPUTX

OGETX

z/OS UNIX FilesMVS Data SetsTSO/E
command...

OPUT

cp
mv

OCOPY

OGET

Figure 20: Copying data between z/OS UNIX and MVS

Copying data using z/OS shell commands
You can use the z/OS shell commands cp (copy) and mv (move) to copy or move files:

• Between the z/OS UNIX file system and MVS data sets
• Within the z/OS UNIX file system.

With the cp and mv commands you can specify whether the file or data set is to be copied or moved as
text, binary, or as an executable. You can also append or truncate suffixes. For examples of using these
commands, see:

• “Using cp to copy a sequential data or PDS member into a z/OS UNIX file” on page 253
• “Using cp to copy a PDS to a z/OS UNIX directory” on page 256
• “Using cp to copy a z/OS UNIX file into a sequential data set or PDS member” on page 258
• “Using cp to copy z/OS UNIX files into a PDS or PDSE” on page 261
• “Copying files within the z/OS UNIX file system” on page 262
• “Using cp to copy executables between MVS and z/OS UNIX” on page 264

For more information about the cp and mv shell commands, see z/OS UNIX System Services Command
Reference.

Copying data using TSO/E commands
You use TSO/E commands to copy data:

• Between the z/OS UNIX file system and MVS data sets
• Within MVS data sets.

© Copyright IBM Corp. 1996, 2018 251

The TSO/E commands that enable you to do this are:
OPUT

Puts (copies) an MVS sequential data set or partitioned data set (PDS or PDSE) member into the file
system. You can specify text or binary data, and select code page conversion for single-byte data.

OPUTX
Puts (copies) a sequential data set, a data set member, an MVS partitioned data set, or a PDSE into a
z/OS UNIX directory. You can specify text or binary data, select code page conversion for single-byte
data, specify a copy to lowercase file names, and append a suffix to the member names when they
become file names.

OGET
Gets a z/OS UNIX file and copies it into an MVS sequential data set or partitioned data set member.
You can specify text or binary data, and select code page conversion for single-byte data.

OGETX
Gets a z/OS UNIX file or directory and copies it into an MVS partitioned data set, PDSE, or sequential
data set. You can specify text or binary data, select code page conversion for single-byte data, allow a
copy from lowercase file names, and delete one or all suffixes from the file names when they become
PDS member names.

OCOPY
Copies data in either direction between an MVS data set and a z/OS UNIX file, using ddnames. OCOPY
can also copy within MVS (one data set to another data set) or within the shell (one file to another file).
OCOPY has a CONVERT operand for converting single-byte data from one code page to another.

For examples of using these commands, see:

• “Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a sequential data set” on page 253
• “Using OPUTX to copy a sequential data set or members of a PDS or PDSE” on page 256
• “Copying an MVS VSAM data set to a z/OS UNIX file” on page 257
• “Using OGET and OCOPY to copy a file into a sequential data set or a PDS member” on page 258
• “Copying z/OS UNIX files into a PDS or PDSE” on page 261
• “Copying an MVS data set into another MVS data set” on page 263
• “Using TSO/E commands and JCL to copy executables” on page 264

You can also invoke BPXCOPY as a TSO/E command as described in the BPXCOPY command description
in z/OS UNIX System Services Command Reference, but the OPUT interface is generally more appropriate.

For information about the TSO/E OPUT, OPUTX, OGET, OGETX, and OCOPY commands, see z/OS UNIX
System Services Command Reference.

For information about the TSO/E ALLOCATE and FREE commands, see z/OS TSO/E Command Reference.
These commands have z/OS UNIX keyword parameters. It is a good idea to use the TSO/E FREE
command to free the allocated data set when you have finished copying to or from a data set.

Copying a sequential data set or PDS member into a z/OS UNIX file
You might want to copy an MVS sequential data set or a member of a partitioned data set or PDSE to a
z/OS UNIX file, so that:

• The data can be used by a program running under the shell.
• If it is a C program source file developed at your workstation, you can compile, link-edit, and debug it in

the shell using the c89/cc/c++ and dbx commands.

The data set can be text or binary.

252 z/OS: UNIX System Services User's Guide

Using cp to copy a sequential data or PDS member into a z/OS UNIX file
The following examples use the cp command to copy a sequential data set or PDS member into a z/OS
UNIX file. You use the same syntax for the mv command.

To copy an MVS sequential dataset to a z/OS UNIX file (in the current working directory):

cp "//'posix.mylogfile'" mylogfile

To copy an MVS PDS member to a z/OS UNIX file (in the current working directory):

cp "//'posix.cpmvtest(myfile)'" myunixfile

If there is an existing z/OS UNIX file with the path name that you specify on the command, it is
automatically replaced and the mode of the file is not changed. The directories specified in the path name
must already exist. This command creates a new file, but it does not create a new directory.

Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a sequential data set
You can use the TSO/E OPUT command or OCOPY commands to do the copy. You can enter either
command:

• In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page 185 for information about
entering TSO/E commands in TSO/E, the shell, and ISPF.

• In batch, using a Terminal Monitor Program (TMP) job.

Using OPUT

To specify data set names and file names, use the OPUT command. To specify ddnames, use the
ALLOCATE command and the OCOPY command together. Because you can specify permissions on the
ALLOCATE command first, the OCOPY command lets you set the permission bits for a newly created file.

If you are moving the data set permanently to the file system, use the TSO/E DELETE command to delete
the data set after copying it.

You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte
data” on page 267 for information about code page conversion for double-byte data.

Example: Using OPUT with a PDSE member

OPUT

OPUT

command...

TURBO.WORKLOAD.TOTALS /u/turbo/wkld/totals

OCT17 oct17

If the user ID TURBO wants to copy a member of a PDSE into a file, TURBO enters the following TSO/E
OPUT command:

OPUT WORKLOAD.TOTALS(OCT17) '/u/turbo/wkld/totals/oct17' TEXT CONVERT(YES)

This command:

• Copies the MVS partitioned data set member OCT17 from the data set TURBO.WORKLOAD.TOTALS to a
text file with the path name /u/turbo/wkld/totals/oct17.

• Converts the data using the default conversion table (from MVS code page IBM-037 to code page
IBM-1047), because YES was specified. To use a different conversion table, specify its name—for

Copying data between the z/OS UNIX file system and MVS data sets 253

example, BPXFX311—for conversion to and from the ASCII conversion table. If you do not want
conversion, omit the CONVERT operand or specify CONVERT(NO).

For more information, see “Copying data: Code page conversion” on page 266.
• Sets a default mode (read-write-execute permission) if oct17 is a new file. For a new text (non-U-

format data set) file, the default is octal 600:

owner=rw-
group=---
other=---

The default mode for a binary load module (U-format data set) is octal 700:

owner=rwx
group=---
other=---

After the file is created, you can change the permissions with the chmod command.

If there is an existing z/OS UNIX file with the path name that you specify on the command, it is
automatically replaced and the mode of the file is not changed.

The directories specified in the path name must already exist. This command creates a new file, but it
does not create a new directory.

Example: Using OPUT with a sequential data set

If the user ID TURBO wants to copy a sequential data set into a file, TURBO enters the following TSO/E
OPUT command:

OPUT WORKLOAD.PROJA.NOV '/u/turbo/wkld/proja/nov' TEXT CONVERT(YES)

This command:

• Copies the MVS sequential data set TURBO.WORKLOAD.PROJA.NOV to a text file with the path
name /u/turbo/wkld/proja/nov.

• Converts the data from the MVS code page IBM-037 to code page IBM-1047, using the default
conversion table because YES was specified.

• Because nov is a new text file, this command sets a default mode (read-write-execute permission) of
octal 600, representing:

– owner=rw-
– group=---
– other=---

Using OCOPY

To copy a data set into a file and use data definition names (ddnames) instead of a data set name and
path name, use the OCOPY command.

1. If the data set and file are not yet allocated, allocate them and specify ddnames, using either the
ALLOCATE command or the DD statement in JCL.

The ALLOCATE command has these operands for allocating a z/OS UNIX file:

PATH
PATHDISP
PATHMODE
PATHOPTS

They are explained in z/OS TSO/E Command Reference.
2. Enter the OCOPY command, making sure that the ddnames used match the ddnames that were

specified when the data set and file were allocated.

254 z/OS: UNIX System Services User's Guide

3. You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte
data” on page 267 for information about code page conversion for double-byte data.

4. If you are moving the data set or partitioned data set member permanently to the file system: After the
copy is completed, delete the original using the TSO/E DELETE command.

Example: Using ALLOCATE and OCOPY

OCOPY
command...

INDD(MVSWORK) OUTDD(OPNWORK)

OCOPY
OCT17 oct17

1. Using the ALLOCATE command to associate the PDSE member with the ddname specified in the
DDNAME keyword, user TURBO could enter:

ALLOCATE DDNAME(MVSWORK) DSNAME('TURBO.WORKLOAD.TOTALS(OCT17)')

For an ALLOCATE that begins with your TSO/E prefix as the high-level qualifier, you can enter the data
set name more simply as DSNAME(WORKLOAD.TOTALS(OCT17))— without the user ID. (The TSO/E
prefix defaults to your user ID, but it can be set with the PREFIX command.) If you do not enclose the
data set name in quotes, TSO/E automatically prefixes the name with your TSO/E prefix. For JCL, you
need the user ID.

2. Using the ALLOCATE command to create a new z/OS UNIX file and associate it with the ddname
specified in the DDNAME keyword, TURBO could enter:

ALLOCATE DDNAME(OPNWORK) PATH('/u/turbo/wkld/totals/oct17')
 PATHDISP(KEEP,DELETE) PATHOPTS(ORDWR,OCREAT)
 PATHMODE(SIRUSR,SIWUSR)

In this example:

• PATHDISP(KEEP,DELETE) indicates that the file should be saved if the session ends normally, but
that it should be deleted if the session ends abnormally.

• The PATHOPTS operand is required only when you are creating a new file.
PATHOPTS(ORDWR,OCREAT) indicates that the owner has read/write access and this is a new file
being created.

• Specifying PATHMODE is required only when you are creating a new file (OCREAT).
PATHMODE(SIRUSR,SIWUSR) indicates that the owner has read and write permission. If you do not
specify a PATHMODE, the default permissions set when the file is allocated are:

owner=---
group=---
other=---

3. After the data set and file have been allocated, TURBO would enter the OCOPY command, using the
ddnames, to copy the MVS partitioned data set member to a z/OS UNIX file using the default
conversion table:

OCOPY INDD(MVSWORK) OUTDD(OPNWORK) TEXT CONVERT(YES) PATHOPTS(USE)

PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified on the ALLOCATE
command.

Example: Using JCL and OCOPY

Alternatively, TURBO could specify the ddnames in the DD statements and perform the OCOPY in the JCL
for a batch job. A DD statement allocates a data set or file and sets up a ddname. In the following

Copying data between the z/OS UNIX file system and MVS data sets 255

example, the //INMVS statement refers to the input data set, and the //OUTHFS statement refers to the
output file:

//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//INMVS DD DSN=TURBO.WORKLOAD.TOTALS(OCT17),DISP=SHR
//OUTHFS DD PATH='/u/turbo/wkld/totals/oct17',
// PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),PATHMODE=(SIRUSR,SIWUSR)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(INMVS) OUTDD(OUTHFS) TEXT CONVERT(YES) PATHOPTS(USE)
/*

In this example:

• IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to be started to process the
TSO/E OCOPY command.

• For CONVERT(YES), the default is TO1047 when you are copying from an MVS data set to a file.
• PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified on the ALLOCATE

command.

For more information about:

• The OPUT and OCOPY commands, see z/OS UNIX System Services Command Reference.
• The ALLOCATE command, see z/OS TSO/E Command Reference.
• The FREE command, see z/OS TSO/E Command Reference.
• The JCL, see z/OS MVS JCL Reference.

Copying a PDS or PDSE to a z/OS UNIX directory
This topic tells you how to copy a PDS or PDSE into a z/OS UNIX directory.

Using cp to copy a PDS to a z/OS UNIX directory
The following example uses the cp command to copy a sequential data set or PDS member into a z/OS
UNIX file. You use the same syntax for the mv command.

To copy all members from the fully-qualified PDS 'turbo.gammalib' to the existing z/OS UNIX
directory dir1, enter the following:

cp "//'turbo.gammalib'" dir1

Note that dir1 is in the current working directory.

Using OPUTX to copy a sequential data set or members of a PDS or PDSE
The OPUTX command is actually an exec that calls OPUT. You can use the OPUTX command to copy either
of these:

• Members of an MVS partitioned data set or PDSE to a z/OS UNIX directory
• A sequential data set or a single member of a partitioned data set to a file

For the copy, you can specify whether this is text or binary data, or select code page conversion. When
copying a partitioned data set or PDSE, you can specify a copy to lowercase file names and append a
suffix to the member names when they become file names.

You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte
data” on page 267 for information on code page conversion for double-byte data.

The single quotation marks around the directory name and file name are optional. Avoid using OPUTX
with path names that contain quotes and spaces. For details on the OPUTX command, see z/OS UNIX
System Services Command Reference.

256 z/OS: UNIX System Services User's Guide

Example: Using OPUTX with a PDSE

User TURBO wants to copy the members from the data set TURBO.PCALCLIB into the directory /u/
turbo/pcalclib. He issues the command:

OPUTX PCALCLIB /u/turbo/pcalclib LC CONVERT(YES) SUFFIX(c)

This command:

• Copies the partitioned data set to a directory. Because the data set name is not enclosed in single
quotation marks, the system automatically uses the data set whose high-level qualifier is the user's
user ID.

• Converts data set member names to lowercase file names.
• Converts the file to code page IBM-1047.
• Appends the suffix .c to each file name.

The members of the partitioned data set become files in the directory:

Member name File name

TURBO.PCALCLIB(PGM1) /u/turbo/pcalclib/pgm1.c

TURBO.PCALCLIB(PGM2) /u/turbo/pcalclib/pgm2.c

TURBO.PCALCLIB(LIST) /u/turbo/pcalclib/list.c

Copying an MVS VSAM data set to a z/OS UNIX file
To copy a VSAM data set:

1. Use the access method services (AMS) utility to move the VSAM data set to a sequential data set.
2. Copy the MVS sequential data set to a z/OS UNIX file. See “Copying a sequential data set or PDS

member into a z/OS UNIX file” on page 252 for instructions.

To move the VSAM data set to a z/OS UNIX file permanently, delete the data set from MVS with the TSO/E
DELETE command.

Copying a z/OS UNIX file into a sequential data set or PDS member
You might want to copy a z/OS UNIX file to a sequential data set or to a member of a partitioned data set
or PDSE. After it is moved, the file:

• Can be data for an existing MVS application program.

Copying data between the z/OS UNIX file system and MVS data sets 257

• Can be sent to another system, including a workstation.

You can copy text files or binary files. See “Copying an executable module from the file system” on page
265 for more information about copying an executable.

Using cp to copy a z/OS UNIX file into a sequential data set or PDS member
The following examples use the cp command to copy a z/OS UNIX file into a sequential data set or PDS
member. You use the same syntax for the mv command.

To copy the z/OS UNIX file myunixfile (from the current working directory) to the MVS PDS member
myfile within the PDS called 'posix.cpmvtest':

cp myunixfile "//'posix.cpmvtest(myfile)'"

To copy the z/OS UNIX file file1 to a new, fully-qualified sequential data set 'turbo.gammalib' to be
created with specific attributes:

cp -P "RECFM=U,space=(500,100)" file1 "//'turbo.gammalib'"

To copy the z/OS UNIX file f1 to a fully-qualified sequential data set 'turbo.gammalib' and treat it as
binary:

cp -F bin f1 "//'turbo.gammalib'"

Using OGET and OCOPY to copy a file into a sequential data set or a PDS member
You can use the TSO/E OGET command or the TSO/E OCOPY command to copy a z/OS UNIX file into a
sequential data set or PDS member. You can enter either of these commands:

• In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page 185 for information about
entering TSO/E commands in TSO/E, the shell, and ISPF.

• In batch, using a Terminal Monitor Program (TMP) job.

To work with data set names and file names, use the OGET command. To work with ddnames, use the
OCOPY command.

OGET
You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte
data” on page 267 for information about code page conversion for double-byte data.

Example: Using OGET with a PDSE member

OGET

OGET

command...

TURBO.WORKLOAD.TOTALS /u/turbo/wkld/totals

OCT17 oct17

If a person with the user ID TURBO enters the following command:

OGET '/u/turbo/wkld/totals/oct17' WORKLOAD.TOTALS(OCT17) CONVERT(YES)

the system:

258 z/OS: UNIX System Services User's Guide

• Copies the text file /u/turbo/wkld/totals/oct17 into the member OCT17 of the PDSE
TURBO.WORKLOAD.TOTALS. (The default file type is a text file.)

• Converts the data from code page IBM-1047 to the MVS code page IBM-037, using the default
conversion table. You can specify a table name if you do not want to use the default table. If you do not
want conversion, omit the CONVERT operand.

For more information, see “Copying data: Code page conversion” on page 266.

If a member by this name already exists in the data set, it is replaced. If the member does not exist, a new
member is created. However, if a partitioned data set or PDSE does not exist, it is not allocated.

If you are moving the z/OS UNIX file permanently to an MVS data set, remove it from the file system with
the rm shell command.

Example: Using OGET with a sequential data set

If a person with the user ID TURBO enters the following command:

OGET '/u/turbo/wkld/proja/nov' WORKLOAD.PROJA.NOV CONVERT(YES)

the system:

• Copies the text file /u/turbo/wkld/proja/nov into the sequential data set
TURBO.WORKLOAD.PROJA.NOV. (The default file type is a text file.)

• Converts the data from code page IBM-1047 to the MVS code page IBM-037, using the default
conversion table. You can specify a table name if you do not want to use the default table. If you do not
want conversion, omit the CONVERT operand.

For more information, see “Copying data: Code page conversion” on page 266.

If a data set with this name already exists, it is replaced. If the sequential data set does not exist, it is
automatically allocated. For details on the format and size of the data set that is allocated, see the OGET
command description in z/OS UNIX System Services Command Reference.

If you are moving the z/OS UNIX file permanently to an MVS data set, remove it from the file system with
the rm shell command.

OCOPY
To copy a z/OS UNIX file into an MVS data set using data definition names (ddname) instead of a data set
name or path name, use the OCOPY command.

1. If the file and data set are not yet allocated, allocate them and specify ddnames, using either the
TSO/E ALLOCATE command or the DD statement for JCL.

The ALLOCATE command has these keywords for allocating a z/OS UNIX file:

PATH
PATHDISP
PATHMODE
PATHOPTS

They are explained in z/OS TSO/E Command Reference.
2. Enter the OCOPY command, making sure that the ddnames used match the ddnames that were

specified when the data set and file were allocated.
3. You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte

data” on page 267 for information on code page conversion for double-byte data.
4. After the copy is completed, you can delete the file using the rm shell command.

Copying data between the z/OS UNIX file system and MVS data sets 259

Example: Using ALLOCATE and OCOPY

OCOPY

OCOPY

command...

OUTDD(MVSWORK) INDD(OPNWORK)

OCT17 oct17

1. Using the ALLOCATE command to associate an existing z/OS UNIX file with the ddname specified in
the DDNAME keyword, user TURBO could enter:

ALLOCATE DDNAME(OPNWORK) PATH('/u/turbo/wkld/totals/oct17')
 PATHOPTS(ORDWR,OAPPEND) PATHDISP(KEEP,KEEP)

In this example:

• The file already exists, and PATHOPTS(ORDWR,OAPPEND) indicates that the file owner has read/
write access to the file and the owner's data should be written at the end of the file.

• PATHDISP(KEEP,KEEP) indicates that the file will be saved in case of normal or abnormal
termination.

2. Using the ALLOCATE command to associate the output data set with the ddname specified in the
DDNAME keyword, user TURBO could enter:

ALLOCATE DDNAME(MVSWORK) DSNAME('TURBO.WORKLOAD.TOTALS(OCT17)') OLD

where the DDNAME keyword specifies the ddname. OLD indicates that this is an existing data set and
others cannot access the data set while the system is writing to it.

Tip: For an ALLOCATE, you can enter the data set name more simply as
DSNAME(WORKLOAD.TOTALS(OCT17)) without the user ID. (TSO/E automatically prefixes the data
set name with your user ID if you do not enclose the name in quotes.) For JCL, you need the user ID.

3. TURBO then enters the OCOPY command, using ddnames, to copy the z/OS UNIX file to an MVS data
set:

OCOPY INDD(OPNWORK) OUTDD(MVSWORK) TEXT CONVERT(YES) PATHOPTS(USE)

PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified on the ALLOCATE
command.

Example: Using JCL and OCOPY

Alternatively, TURBO could specify the ddnames in the //IN DD and //OUT DD statements in the JCL for a
batch job. A DD statement allocates a data set or file and sets up a ddname. For example:

//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//INHFS DD PATH='/u/turbo/wkld/totals/oct17',PATHOPTS=(ORDONLY)
//OUTMVS DD DSN=TURBO.WORKLOAD.TOTALS(OCT17),DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(INHFS) OUTDD(OUTMVS) TEXT CONVERT(YES) PATHOPTS(USE)
/*

In this example:

• IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to be started to process the
TSO/E OCOPY command.

• PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified on the ALLOCATE
command.

For further information about:

260 z/OS: UNIX System Services User's Guide

• The OGET and OCOPY commands, see z/OS UNIX System Services Command Reference.
• The ALLOCATE command, see z/OS TSO/E Command Reference.
• The JCL, see z/OS MVS JCL Reference.

Copying z/OS UNIX files into a PDS or PDSE
You might want to copy z/OS UNIX files int a partitioned data set or a PDSE. After they are moved, the
files:

• Can be data for an existing MVS application program.
• Can be sent to another system, including a workstation.

Using cp to copy z/OS UNIX files into a PDS or PDSE
The following example uses the cp command to copy z/OS UNIX files (in the current working directory)
into a PDS or a PDSE. You use the same syntax for the mv command. This example assumes the z/OS
UNIX directory does not contain subdirectories.

To drop .c suffixes before copying the files file1.c, file2.c, and file3.c in the directory dir1 into
the existing PDS 'turbo.gammalib', enter the following:

cp -S d=.c file1.c file2.c file3.c "//'turbo.gammalib'"

Using OGETX to copy files into a PDS or PDSE
The OGETX command is actually an exec that calls OGET. You can use the OGETX command to copy either
of these:

• Files from a z/OS UNIX directory to an MVS partitioned data set or PDSE
• An individual file to a sequential data set or member of a partitioned data set

For the copy, you can specify text or binary data and select code page conversion. When copying a
directory, you can specify a copy from lowercase file names and delete one or all suffixes from the file
names when they become PDS member names. For a file to be copied, its name must conform to
partitioned data set member name conventions after any suffix and LC processing is done. Member
names can be 1–8-character uppercase alphanumeric or national characters (A–Z, 0–9, $, #, @). They
cannot start with a numeric.

If you specify a particular suffix, only files with that suffix are copied—with the suffix deleted. If you use
the SUFFIX operand without specifying a particular suffix, any file names with suffixes have the suffix
deleted, and all files are copied. (After the suffix is deleted, if more than one file has the same name, each
subsequent file that is copied overlays a file with the same name that was copied previously.)

The single quotation marks around the directory name and file name are optional. Avoid using OGETX
with pathnames that contain quotes and spaces.

You can use the CONVERT option for single-byte data, but not for double-byte data. See “Double-byte
data” on page 267 for information on code page conversion for double-byte data.

If the OGETX command creates a new data set, it has the same format and size as a data set created by
the OGET command. For details on the OGETX command, see z/OS UNIX System Services Command
Reference.

Copying data between the z/OS UNIX file system and MVS data sets 261

Example: Using OGETX with a PDSE

OGETX

command...

OGETX

TURBO.GAMMALIB /u/turbo/gammalib

PGM1

PGM2

LIST

pgm1.c

pgm2.c

list.prg

User TURBO wants to copy the directory /u/turbo/gammalib into the partitioned data set
TURBO.GAMMALIB. He issues the command:

OGETX /u/turbo/gammalib GAMMALIB LC SUFFIX

This command:

• Copies into the partitioned data set all the files in the directory that meet MVS member name
requirements. Because the data set name is not enclosed in single quotation marks, the system
automatically supplies the user's user ID (TURBO) as a high-level qualifier.

• Copies from files with lowercase, uppercase, or mixed-case names.
• Removes any suffixes to the file names. (After the suffix is deleted, if more than one file has the same

name, each subsequent file that is copied overlays a file with the same name that was copied
previously.)

The files in the directory become partitioned data set members:

File name Member name

/u/turbo/gammalib/pgm1.c TURBO.GAMMALIB(PGM1)

/u/turbo/gammalib/pgm2.c TURBO.GAMMALIB(PGM2)

/u/turbo/gammalib/list.prg TURBO.GAMMALIB(LIST)

Copying files within the z/OS UNIX file system
You can use the shell commands cp or pax or the TSO/E command OCOPY to copy files within the z/OS
UNIX file system.

Using the shell: Use the cp shell command to copy:

• One file to another file in the working directory, or to a new file in another directory.
• A file, a set of files, or a set of directories to another location in your file system.

To copy one file to another file in the working directory, enter:

cp file1 file2

This command copies the contents of file1 into file2.

To copy a list of files into another directory, enter:

cp file1 file2 file3 dir1

This command copies the files file1, file2, file3 into the directory dir1.

262 z/OS: UNIX System Services User's Guide

For further information about the cp command, see z/OS UNIX System Services Command Reference.

You can use the pax shell command in copy mode to copy a set of directories and files to another place in
your file system.

To use pax in copy mode, specify the -r and -w (or -rw) options, as follows:

pax -rw pathname directory

pax reads the specified path name and copies it to the target directory. The target directory must already
exist and you must have write access to it. If a path name is a directory, pax copies all the files and
subdirectories in that directory, as well as the directory itself, to the target directory.

Using pax in copy mode with additional options such as -C and -M can be useful for migrating data from
one file system type to another (for instance, from HFS to zFS). For further information about the pax
command, see the pax command description in z/OS UNIX System Services Command Reference.

Using TSO/E: You can use the TSO/E OCOPY command to copy a z/OS UNIX file to another z/OS UNIX file
and, in the process, convert the data from one code page to another.

Example: To copy a z/OS UNIX file to another z/OS UNIX file in a different directory, converting the data:

ALLOCATE DDNAME(KPAYR) PATH('/u/kinn/bin/payroll')
ALLOCATE DDNAME(MPAYR) PATH('/u/mills/bin/payroll')
OCOPY INDD(KPAYR) OUTDD(mpayr) TEXT CONVERT((BPXFX311)) TO1047

The combination of CONVERT((BPXFX311)) and TO1047 indicates that you want to use the ASCII
conversion table to convert from ASCII to code page IBM-1047. TO1047 or FROM1047 is required if
CONVERT is specified.

With the CONVERT parameter, you can specify a data set name, a member name, or both. In this example,
the use of (()) with no data set name indicates that you are specifying a member that is a module in the
standard search order for MVS.

If the files that are being allocated are new files, the PATHOPTS and PATHMODE operands are required.

Copying an MVS data set into another MVS data set
You can use the TSO/E OCOPY command to copy an MVS data set into another data set. It has a CONVERT
option that lets you convert between these code pages:

• IBM-037 and IBM-1047
• IBM-037 and ISO8859-1
• Code pages in a user-defined conversion table

With the TSO/E OCOPY command, you can copy:

• A sequential data set to a sequential data set
• A sequential data set to a partitioned data set or PDSE member
• A partitioned data set or PDSE member to a partitioned data set or PDSE member
• A partitioned data set or PDSE member to a sequential data set

You can enter the command:

• In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page 185 for information about
entering TSO/E commands in TSO/E, the shell, and ISPF.

• In batch, using a Terminal Monitor Program (TMP) job.

The OCOPY command uses ddnames instead of data set names:

OCOPY INDD(ddname1) OUTDD(ddname2)
 {TEXT | BINARY}

Copying data between the z/OS UNIX file system and MVS data sets 263

 {CONVERT(convert_table_name | YES | NO)}
 {TO1047 | FROM1047}

You do not need the PATHOPTS operand when copying from one data set to another.

There are two ways to specify ddnames, using either the ALLOCATE command or JCL for a batch job.

Example: Using ALLOCATE and OCOPY
Using the ALLOCATE command to associate each data set with a ddname, user TURBO could enter:

ALLOCATE DDNAME(TMP1) DSNAME(TEMP1) SHR
ALLOCATE DDNAME(TMP1OC) DSNAME(TEMP1OC) OLD

where the DDNAME keyword specifies the ddname. SHR indicates that this is an existing data set and
others can access it while the system is reading from it. OLD indicates that this is an existing data set and
others cannot access the data set while the system is writing to it.

TURBO could then enter the OCOPY command, using the ddnames from the ALLOCATE command, to
convert the data in TEMP1 from the MVS country-extended code page to code page IBM-1047, and copy
it to the data set TEMP1OC:

OCOPY INDD(TMP1) OUTDD(TMP1OC) TEXT CONVERT(YES) TO1047

If CONVERT is specified, you must also specify TO1047 or FROM1047.

Example: Using JCL and OCOPY
Alternatively, TURBO could specify the ddnames in the //IN DD and //OUT DD statements in the JCL for a
batch job. A DD statement allocates a data set or file and sets up a ddname. For example:

//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//IN DD DSN=TURBO.TEMP1,DISP=SHR
//OUT DD DSN=TURBO.TEMP1OC,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(IN) OUTDD(OUT) TEXT CONVERT(YES) TO1047
/*

In this example,

• IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to be started to process the
TSO/E OCOPY command.

• TO1047 is required, because you are copying from one data set to another data set.

Copying executable modules between MVS data sets and the z/OS UNIX file
system

Using cp to copy executables between MVS and z/OS UNIX
The following example uses the cp command to copy an MVS executable module to a z/OS UNIX
executable file in the current working directory. You use the same syntax for the mv command.

cp -X "//'posix.my.loadlib(myexec)'" myexec

The following example uses the cp command to copy a z/OS UNIX executable file in the current working
directory to an MVS executable module. You use the same syntax for the mv command.

cp -X myexec "//'posix.my.loadlib(myexec)'"

Using TSO/E commands and JCL to copy executables

264 z/OS: UNIX System Services User's Guide

Copying an executable module from a PDSE

If the load module is in a PDSE, you can copy it to the file system using one of these commands:

• The OPUT or OPUTX command. For a new text (non-U-format data set) file, the default permission is
octal 600; you can use the chmod command or the MODE keyword on the OPUTX command to make it
executable. If you replace an existing file, the existing permissions are unchanged.

• The OCOPY command. Specify PATHMODE(SIRWXU) to make the file executable for the owner.

Copying an executable module from a PDS

If the load module is in a partitioned data set (PDS), you can do one of these:

• Use OPUTX. If the source data set is a PDS with an undefined record format, OPUTX treats the members
as load modules. In order for the program to be able to run from the file hierarchy, the entry point must
be at the beginning of the load module.

In order for OPUTX to treat the file as a load module, do not specify BINARY or TEXT. Once the module
is in the file system, use chmod to make it executable. If you replace an existing file, the permissions are
unchanged.

• Use JCL that invokes the binder before you copy the module into the file system. See the following
example for sample JCL.

Example: Using JCL to copy from a PDS to the file system

To copy a load module out of a partitioned data set and into the file system, you have to use the binder to
flatten the load module. Here is an example of JCL our friend TURBO wrote for copying a z/OS XL C/C++
load module into the file system:

//TURBO JOB (XX,YY,ZZ),MSGCLASS=H,CLASS=A,
// MSGLEVEL=(1,1)
//*
//LKED EXEC PGM=IEWBLINK,REGION=500K,
// PARM='LIST,REUS,RENT,NCAL,LET,MAP,CASE=MIXED'
//SYSPRINT DD SYSOUT=*
//INLIB DD DSN=TURBO.POSIX.LOADLIB,DISP=SHR
//*
//SYSLMOD DD PATH='/u/turbo/llib/payrll'
//*
//SYSLIN DD *
 INCLUDE INLIB(PAYRLL)
 ENTRY CEESTART
/*

This job relinks, or rebinds, the load module PAYRLL from TURBO.POSIX.LOADLIB(PAYRLL), and puts the
output into the file system as /u/turbo/llib/payrll. Be sure you specify the correct entry point—in
this case, CEESTART—for a z/OS XL C/C++ program. If you do not specify the entry point, the entry point is
assumed to be at the beginning of the load module.

If the file does not exist you must specify the PATHOPTS and PATHMODE parameters on the DD
statement in order to create the file with the appropriate permissions. If the file already exists but you do
not have the appropriate file permissions, either the permissions or your access privileges will have to be
changed.

Copying an executable module from the file system

There are two methods for copying an executable module from the file system into a data set. These
methods are not exactly copy operations; instead, they bind the executables over to the data set. As a
result, certain attributes are not preserved, but rather, re-established:

• Use OGETX without the TEXT or BINARY option. If you are copying into a target data set that is a PDS or
PDSE with an undefined record format, OGETX treats the files as executables. Because the entry point is
re-established, this option only works if the original entry point is at the beginning of the executable.

Along with the entry point, other attributes are re-established, such as the authorization (AC) value,
which is reset to AC=1 (the AUTH option allows it to be set to AC=1).

Copying data between the z/OS UNIX file system and MVS data sets 265

Be aware that most executables will not copy successfully into a PDS. When you attempt to execute this
kind of operation, you'll receive the following type of error:

IEW2606S 4B39 MODULE INCORPORATES PROGRAM MANAGEMENT 3
FEATURES AND CANNOT BE SAVED IN LOAD MODULE FORMAT.

Instead of copying into a PDS, executables created with OS/390 V2R4 or later can be copied into a
PDSE.

Another exception is DLL-enabled executables created with OS/390 V2R4 or later. These executables
will not copy successfully into both PDSs and PDSEs. This occurs because the information that is
provided by the IMPORT control statements is not preserved, and must be specified again during the
rebind.

• Use JCL that invokes the binder before you copy the executable into the data set. See the following
example for sample JCL.

Example: Using JCL to copy from the file system to a PDS

To copy an executable out of the file system and into a data set, you need to use the binder to reprocess
the executable. Here is an example of JCL our friend TURBO wrote for copying a z/OS XL C/C++ load
module into a data set:

 //TURBO JOB (XX,YY,ZZ),MSGCLASS=H,CLASS=A,
 // MSGLEVEL=(1,1)
 //*
 //LKED EXEC PGM=IEWBLINK,REGION=500K,
 // PARM='LIST,REUS,RENT,NCAL,LET,MAP'
 //SYSPRINT DD SYSOUT=*
 //SYSLMOD DD DSN=TURBO.POSIX.LOADLIB,DISP=SHR
 //*
 //INLIB DD PATH='/u/turbo/llib/payrll',
 // PATHOPTS=(ORDONLY)
 //*
 //SYSLIN DD *
 INCLUDE INLIB
 ENTRY CEESTART
 NAME PAYRLL(R)
 /*

This job relinks, or rebinds, the XL C/C++ executable /u/turbo/llib/payrll, and puts the output into
TURBO.POSIX.LOADLIB(PAYRLL). Be sure you specify the correct entry point—in this case, CEESTART—for
a XL C/C++ program. If you do not specify the entry point, the entry point is assumed to be at the
beginning of the executable. Also, if required, you must specify AC=1.

If this is a DLL created using V2R4 or later and without the use of the prelinker, any definition side-decks
of IMPORT control statements will need to be re-specified as input to the binder. In general, any control
statements and options that were used when the original /u/turbo/llib/payrll was created will
need to be specified again.

Copying data: Code page conversion
The method you use to convert data from one code page to another depends on whether it is single-byte
or double-byte data.

Single-byte data
If you are copying single-byte data into or out of the z/OS UNIX file system, you can use one of these:

• Working in MVS, you can use the z/OS XL C/C++ iconv utility to convert MVS data from one code page
to another. For information about the z/OS XL C/C++ iconv utility, see z/OS XL C/C++ Programming
Guide.

• Working in the shell, you can use the iconv shell command to convert z/OS UNIX data from one code
page to another. For information about the iconv shell command, see the iconv command description
in z/OS UNIX System Services Command Reference.

266 z/OS: UNIX System Services User's Guide

• The CONVERT operand on the OCOPY, OGET, OGETX, OPUT, and OPUTX commands provides these code
page conversion choices for the data as you are copying:
CONVERT((BPXFX111))

Specifies a conversion table to convert between code pages IBM-037 and IBM-1047.
CONVERT((BPXFX311))

Specifies an ASCII-EBCDIC conversion table to convert between code pages ISO8859-1 and
IBM-1047.

CONVERT(YES)
Specifies the default conversion table BPXFX000, which is an alias that points to BPXFX111, to
convert the data.

CONVERT(user-defined table)
Specifies the name of a user-defined conversion table.

In this list, the use of (()) with no data set name indicates that you are specifying a member that is a
module in the standard search order for MVS.

Double-byte data
If you are moving double-byte data into or out of the z/OS UNIX file system, you can convert the data to or
from the shell-supported DBCS code page IBM-939 using one of two utilities:

• Working in MVS, you can use the z/OS XL C/C++ iconv utility. For information about the z/OS XL C/C++
iconv utility, see z/OS XL C/C++ Programming Guide.

• Working in the shell, you can use the iconv shell utility. For information about the iconv shell utility,
see the iconv command description in z/OS UNIX System Services Command Reference.

Example: Using the iconv shell utility with MBCS data

In this example, the PDSE member MBCSDATA is moved into the file system and then converted to code
page IBM-939 from code page IBM-932 (a multibyte ASCII code page):

1. Run the OPUT command from the shell, using the double quotation marks to prevent the shell from
processing it:

tso oput "'usr3.data(mbcsdata)' '/tmp/usr3/mbcsdata' bin"

2. Change to the directory that the file mbcsdata is in:

cd /tmp/usr3

3. Use iconv to convert the data and put it into the output file dbcsdata:

iconv -f IBM-932 -t IBM-939 mbcsdata > dbcsdata

Copying data between the z/OS UNIX file system and MVS data sets 267

268 z/OS: UNIX System Services User's Guide

Chapter 22. Transferring files between systems

You can create applications and files at your workstation and then move the resulting files to the z/OS
UNIX file system for further application development, such as compiling and debugging, or to share the
files. There may also be times when you want to send z/OS UNIX files to your workstation. This
information discusses several methods for moving files directly between your workstation and z/OS UNIX.
Note that most of the examples show z/OS UNIX files being transferred to or from the workstation.

File transfer directly to or from z/OS UNIX
To move a file or file system between your workstation and z/OS UNIX, you can use one of the following
methods.

Transferring files using File Transfer Protocol (FTP)
If both the workstation and z/OS UNIX have TCP/IP installed, you can use the File Transfer Protocol (FTP)
facility of TCP/IP.

With the z/OS Communications Server installed on a remote z/OS system, you can ftp files into or from
that system's file system.

An FTP client is not available for the shell and utilities.

Transferring files using the Network File System feature
Using the Network File System feature, you can edit or browse a z/OS UNIX file directly from your
workstation. For example, if you want to copy a file to a workstation file, you do not need to move it to an
MVS data set first. Here is an example showing the steps involved:

1. Log on to the host using mvslogin.
2. Mount the directory /u/usr1/a/b at the workstation with the command:

 mount mvshost:"/u/usr1/a/b" /x/y

3. Copy the file /u/usr1/a/b/c to the workstation file /mycopy/c with the command:

cp /x/y/c /mycopy/c

Using the Network File System feature from your workstation, you can copy a workstation file to z/OS
UNIXfile without having to move it to an MVS data set first. This example assumes that you have run your
mvslogin and mounted the directory /u/usr1/pgma/b at the workstation under the path name /
mypgma/b. You copy the workstation file /proj2/modc to the file /u/usr1/pgma/b/modc with the
command:

cp /proj2/modc /mypgma/b/modc

Suppose you have an executable that you compiled and linked on a workstation, and you want to store it
in an MVS data set but run it from the workstation. You copy the executable to the mounted z/OS UNIX file
in binary format. Later, when you want to run the program from the workstation, you use NFS to mount the
directory in binary format, and then run the program from the mounted z/OS UNIX file system.

For more information about working with NFS files on your workstation, see z/OS Network File System
Guide and Reference.

Transferring files using the SEND and RECEIVE programs
You can transfer files using the SEND and RECEIVE programs that are available with PC 3270 emulation
programs and with OS/2 Extended Edition Version 1.2 or later.

© Copyright IBM Corp. 1996, 2018 269

Before you use the SEND and RECEIVE programs, you must be working in TSO/E. If you are using the
OMVS interface to work in the shell, use the TSO function key to switch to TSO/E command mode before
using the programs.

Transferring files by using the File Transfer, Access, and Management Function
You can also transfer files between your workstation and the z/OS UNIX file system by using the File
Transfer, Access, and Management (FTAM) function of OSI/File Services.

File transfer using MVS data sets
Transferring files between systems can also take place without the Network File System feature.

Transferring files into the z/OS UNIX file system
If the z/OS Communications Server is installed on a remote system, you can ftp files directly into that file
system.

Tip: If you are ftp-ing to a remote z/OS UNIX file system, be aware that the z/OS UNIX server often
listens to a port other than the well-known port. Make sure you know the address and port to use.

If you are not using the Network File System feature and the z/OS Communications Server is not installed,
perform these steps:

1. Transfer the data to the host, using your preferred method (for example, FTP).
2. While logged on to TSO/E, copy the data from an MVS data set into the file system, using the TSO/E

OPUT command.

Single-byte data: If you need to convert to a shell-supported code page, use the CONVERT option on
the OPUT command. See “Using OPUT” on page 253.

Double-byte data or multibyte ASCII-based data: If you need to convert to a shell-supported code
page, use the z/OS C/C++iconv utility (while working in MVS) or the iconv shell utility (while working
in the shell). For more information, see “Copying data: Code page conversion” on page 266.

3. If you want, you can delete the MVS data set after the copy with the TSO/E DELETE command.

Transferring files to the workstation
If you are working without the Network File System feature, perform these steps while logged on to
TSO/E:

1. Copy the file to an MVS data set (sequential or partitioned) using the TSO/E OGET command. See
“OGET” on page 258.

Single-byte data: If you need to convert to a different code page, you can use the CONVERT option on
the OGET command.

Double-byte data: If you need to convert the data, you can use the iconv shell utility while working in
the shell. For more information, see “Copying data: Code page conversion” on page 266.

2. If you want, you can delete the file after the copy with the rm shell command.
3. Send the data set to the workstation, using your preferred method (for example, FTP).

Transporting an archive file on tape or diskette
A directory or file system that is going to be transported on tape or diskette is put into an archive file, as
discussed in “Backing up and restoring files: options” on page 211. This information discusses the steps
involved in

270 z/OS: UNIX System Services User's Guide

• Installing an archive file from tape or diskette into a z/OS UNIX file system
• Putting an archive file on tape or diskette to send to another site

Putting an archive file into the file system
You may receive an archive file on tape or diskette. There are two main steps involved in installing the
archive file into a z/OS UNIX file system:

1. Transferring the archive file to an MVS data set, from either a workstation or a tape drive at your MVS
system.:

2. Copying the archive file from the data set into the file system

Step 1. Transferring the archive file to a data set

From a workstation: If you have TCP/IP on your workstation, you can use the ftp command to transfer
an archive file to MVS or to the z/OS shell (if you have the z/OS Communications Server installed).
a.

Copy the archive file into a file.
b.

Enter the FTP command.

Tip: If you are ftp-ing to a remote z/OS UNIX file system, be aware that the z/OS UNIX server often
listens to a port other than the well-known port. Make sure you know the address and port to use.

c.
Enter the binary subcommand.

d.
Enter the put subcommand, specifying a z/OS UNIX directory or a sequential or partitioned data set
as the destination.

If you are specifying a data set, you may prefer to use one partitioned data set for all your archive
files, with each archive file a member in the partitioned data set. Here is an example of the partitioned
data set attributes you might want:

 DATA SET NAME: TURBO.CMPL.ARCHIVE

 GENERAL DATA: CURRENT ALLOCATION:
 Volume serial: TRBLK1 Allocated Cylinders: 26
 Device type: 3380 Allocated extents: 5
 Organization: PO
 Record format: VB
 Record length: 255
 Block size: 23476 CURRENT UTILIZATION:
 1st extent Cylinders: 12 Used Cylinders: 0
 Secondary Cylinders: 0 Used extents: 0

 Creation date: 1994/12/18
 Expiration date: ***NONE***

e.
Go to “Step 2. Copying the file from a data set into a file system” on page 272.

From a tape drive at your MVS system: If you have an archive file on tape and the necessary tape drive
at your MVS system, you can copy the file directly from the tape into a data set.
a.

Copy the archive file from the tape into a data set. Here is some sample JCL for copying an archive file
(TURBO.TARTAPE) from a tape into a data set (TURBO.TAR):

//TAPE2DS JOB ,',MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY

Transferring files between systems 271

//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=TURBO.TARTAPE,UNIT=TAPE,LABEL=(1,NL),DISP=OLD,
// VOL=SER=123456,DCB=(RECFM=U,BLKSIZE=5120)
//SYSUT2 DD DSNAME=TURBO.TAR,DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(5120,(100,100),RLSE)

Note: For LABEL=, NL indicates that there is no label. Use NL when transferring a tape between an
MVS and a UNIX system; use SL when transferring a tape between two MVS systems.

b.
Go to “Step 2. Copying the file from a data set into a file system” on page 272, which follows.

Step 2. Copying the file from a data set into a file system

Working in MVS: Use the pax or the tar shell command to restore the directory or file system from the
archive file; all the component files are restored from the archive file. If you need to convert the source to
the code page IBM-1047 used in the z/OS shell, use the pax command with the -o option. See “Backing
up and restoring files: options” on page 211 for more information.

Sending an archive file to others
The following are the steps for sending an archive file that contains multiple files on tape or diskette. In
the example, the pax command creates an archive file for a directory or file system. The TSO/E OGET
command, with the BINARY option, then copies the archive file into a partitioned data set or a sequential
data set. Step 2 is not necessary with OS/390 Release 8 and later.

Step 1. Create an archive file for multiple files

You can use either the pax or the tar shell command to create the archive file. All the component files
are stored in one archive file. For more information, see “Backing up and restoring files from the shell” on
page 212, and also see z/OS UNIX System Services Command Reference for a complete description of the
pax and tar commands.

If you need to convert to a different code page than the one used in the shell, use the pax command with
the -o option. See “Backing up and restoring files: options” on page 211 for more information.

Step 2. Copy the file from the file system to a data set

Use the TSO/E OGET command with the BINARY option to copy the archive file into a sequential data set.
See “OGET” on page 258 for more information.

tso "OGET '/tmp/testpgm.pax' 'POSIX.TESTPGM.PAX' BINARY"

The OGET command copies the archive file into the specified MVS data set:

• '/tmp/posix/testpgm.pax' is the absolute pathname for the archive file.
• 'POSIX.TESTPGM.PAX' is the fully qualified data set name for the data set.
• BINARY indicates that the data is binary.

The final step is to use ftp (or some other method) to send the file to the intended destination.

Step 3. Transfer the archive file to a tape or diskette

To a tape or diskette at the workstation: While working in MVS:
a.

For information about how to copy an archive file from the file system into a data set, see “Step 2.
Copy the file from the file system to a data set” on page 272.

b.
Enter the FTP command.

c.
Enter the binary subcommand.

272 z/OS: UNIX System Services User's Guide

d.
Enter the put subcommand, specifying a pathname at your workstation as a destination.

e.
At the workstation, copy the archive file into a file.

To a tape at the host: While working in MVS:
a.

For information about how to copy an archive file from the file system into a data set, see “Step 2.
Copy the file from the file system to a data set” on page 272.

b.
Copy the archive file from the data set to tape. Here is some sample JCL for copying a data set
containing an archive file (TURBO.TAR) to a tape (TURBO.TARTAPE):

//DS2TAPE JOB ,',MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=TURBO.TAR,DISP=OLD
//SYSUT2 DD DSNAME=TURBO.TARTAPE,UNIT=TAPE,LABEL=(1,NL),
// DISP=(NEW,KEEP)

Guideline: For LABEL=, NL indicates that there is no label. Use NL when transferring a tape between
an MVS and a UNIX system; use SL when transferring a tape between two MVS systems.

Transferring files between systems 273

274 z/OS: UNIX System Services User's Guide

Appendix A. Advanced vi topics

After you have mastered basic usage of vi, as described in “Using the vi screen editor” on page 228, you
might want to explore some of the editor's other capabilities.

Editing options
vi has many options that change the way the editor behaves during an editing session. We will discuss a
few that may be immediately useful. For a complete list of these options, see the vi command description
in z/OS UNIX System Services Command Reference.

You must be in Command Mode to set options. To set an option, begin by typing a colon (:). You will see
the cursor move to the bottom of the screen. Then type the word set, a space, and the name of the option
you want to set—we will talk about option names in a moment. You can correct typing mistakes by
backspacing. When you have typed everything correctly, press <Enter>.

One commonly used option is "ignorecase". If you type:

:set ignorecase

vi does not pay attention to the case of letters when searching. Many people prefer caseless searches
over case-sensitive ones. If you want to go back to case-sensitive searches, type

:set noignorecase

Setting tab stops
By default, vi sets tab stops every 8 spaces. For example, if you begin a paragraph by typing a tab, the tab
moves the cursor over 8 spaces. Many people feel 8 spaces are too many for a tab stop. You can set tab
stops of 5 spaces with:

:set tabstop=5

Similar commands can set tab stops to any number of spaces.

Using abbreviations
You can define an abbreviation for commonly used words or phrases. For example, if you type:

:ab www World Wide Web

and then press <Enter>, this sets the abbreviation. As soon as you type the abbreviation in text and move
the cursor to the next space after www, the abbreviation is expanded into the associated phrase. The
abbreviation function is case-sensitive. An abbreviation lasts for the duration of a vi session. For
information about how to set up a file with frequently used editing options, see “Setting up an editing
options command file” on page 276.

If you want to get rid of an abbreviation that has been set, use the :una (unabbreviate) command. For
example, type:

:una www

to get rid of the abbreviation.

Other editing options
For a complete list of the editing options, see the vi command description in z/OS UNIX System Services
Command Reference.

© Copyright IBM Corp. 1996, 2018 275

Setting up an editing options command file
A command file contains a number of commands that can be executed as if they were typed in a vi
session. For example, you might use vi to create a file with the contents:

set wrapmargin=8
set tabstop=5
set shiftwidth=5
ab www World Wide Web

This sets all the options you want to use and all the abbreviations you need. The file can only contain
instructions that normally start with a colon (:) in vi, but you omit the colons in the command file. During
a vi session, you can execute all the instructions in the command file with the instruction:

:so cmdfile

where cmdfile is the name of your command file. so stands for source, and it tells vi that the given file
should be taken as the source of a number of commands.

You can execute the commands in a command file when you first start vi. Start vi with the command:

vi -c 'so cmdfile' filename

where cmdfile is the name of your command file and filename is the name of the file you want to edit. You
might want to set up an alias for vi -c 'so cmdfile'; for example:

alias vic="vi -c 'so cmdfile'"

You can also set up a $HOME/.exrc file that contains all the commands you may want to run whenever
you enter vi.

Editing several files
In a typical vi session, you may want to edit several files. When you have finished editing one file, you
must first save your text in that file. Once you have saved your changes, you can start editing a different
file by typing:

:edit newfilename

and then press <Enter>. This will clear out the text you have been editing and set things up so you can
edit the new file. If the file already exists, its current contents will be read in.

Here's a trick to remember when you want to edit a number of files. If you start vi with a command line of
the form

vi file1 file2 file3 ...

you can edit several files one after the other. After you have finished editing a file and saved it, you can
move among files using the following commands:
Command

Action
:n

Edits the next file in the list of files.
:n!

Edits the next file in the list of files and discards the changes made to the current file.
:n filenames

Specifies a new list of files to be edited.

It may be particularly useful to use wildcard characters on the vi command line, as in

vi *.c

276 z/OS: UNIX System Services User's Guide

This is expanded to a list of all the files under the current catalog that have the .c extension.

Combining files
Occasionally, you may want to combine a number of files into a single document. For example, you may
have a table of data stored in one file and want to add the table to another file. You can read in the
contents of a file after the line that holds the cursor. The r stands for Read; it reads the contents of a file
to be added to the current file after the line indicated by the cursor.

The same sort of command can be used to combine the chapters of a document into a single file. For
example,

:r chapter1
G
:r chapter2
G
:r chapter3

will read in chapters that are stored in separate files. Notice that we had to use G commands to go to the
end of the file after each read operation, so that the next input file would be added to the end of the text.

Editing program source code
Because vi originated on a UNIX system, the editor has a number of features aimed primarily at
programming in the C language. However, these same features are applicable to many other languages.

Controlling indention
The source code for a program differs from ordinary text in a number of ways. One of the most important
of these is the way in which source code uses indention. Indention shows the logical structure of the
program: the way in which statements are grouped into blocks.

Issue the command:

:set autoindent

(Don't forget to press<Enter>after you have typed this.) This command turns on an option supplied
primarily to control indention when entering source code. Each line is automatically indented the same
distance as the previous one. As a programmer, you will find this saves you quite a bit of work getting the
indention right, especially when you have several levels of indention.

When you are entering code with autoindent enabled, typing <EscChar-T> gives you another level of
indention, and typing <EscChar-D>takes one away. While you are in Insert Mode (not Command Mode):

• Type <EscChar-T> at the start of a line to indent it in one level.
• Type <EscChar-D> at the start of a line to indent it out one level.

The amount of indention provided by <EscChar-T> is one tab character; the space depends on the setting
of tabstop.

Try using the autoindent option when you are entering source code. It simplifies the job of getting
indention correct. It can even sometimes help you avoid bugs; for example, in C source code, you usually
need one closing } for every level of indention you go backwards.

The << and >> commands are also helpful when indenting source code:
>>

Shifts a line right 8 spaces (that is, adds 8 spaces of indention)
<<

Shifts a line left 8 spaces (that is, removes 8 spaces of indention)

Advanced vi topics 277

You can shift a number of lines by typing the number followed by >> or <<. For example, typing 5>> will
indent five lines, including the line the cursor is on.

The default shift is 8 spaces (right or left). You can change this default with this command:

:set shiftwidth=4

Tip: It is convenient to have a shiftwidth that is the same size as the width between tab stops.

Searching for opening and closing brackets
The characters (, [, {, and < can all be called opening brackets. When the cursor is resting on one of these
characters, pressing the % key moves the cursor from the opening bracket to the corresponding closing
bracket character),], }, and >, keeping in mind the usual rules for nesting brackets. For example, if you
move the cursor to the first (in:

if (cos(a i) > sin(b i +c i))
 {
 printf("cos and sin equal!");
 }

and press %, you will see the cursor jump to the parenthesis at the end of the line. This is the closing
parenthesis that matches the opening one.

Similarly, if the cursor is on one of the closing bracket characters, pressing % will move the cursor
backwards to the corresponding opening bracket character.

Not only does this search character help you move forward and backward through a program in long
jumps, but it also lets you check the nesting of parentheses in source code. For example, if you put the
cursor on the first { at the beginning of a C function, pressing % should move you to the } that (you think)
ends the function. If it doesn't, something has gone wrong somewhere.

Making substitutions
If the name of a data object or function has to be changed in a program (for whatever reason), it becomes
necessary to change every occurrence of that name. This would be a tedious process using the vi
features we have discussed up to this point, because you would have to search through each source file
for the name and then type in the new name wherever the old one was found. To avoid much of this work,
vi offers the substitute command.

The usual form of the substitute command is

:s/pattern/replacement/

where pattern is any of the patterns used in searches, and replacement is any string.

As soon as you type the colon (:), you see the cursor move to the bottom of the screen. Then type the rest
of the command and press <Enter>. The command puts the given replacement string in the place of the
first string that matches the given pattern.

What happens if a line has more than one string that matches the pattern? The s command replaces only
the first occurrence of a given string on a line. The position of the cursor in the line does not matter.

If you want to change every occurrence of a string on a line, type a g (for global) after the last slash.

Specifying a range of lines to change

You can also apply s to a range of lines. For example, let's examine the command:

:1,200s/^/!/

What happens? The 1,200 in front of the s indicates that the command should be applied to the lines
from 1 through 200 (everything up to the 200th line in the file). The s command itself says to replace the

278 z/OS: UNIX System Services User's Guide

beginning of the line (^) with an exclamation point. So an exclamation point would be put at the beginning
of every line up to number 200. To get rid of the exclamation points, you would type:

:1,200s/^!//

which says change every ! at the beginning of a line to nothing.

Determining line numbers

In these instructions, we made use of line numbers to refer to lines. How do you know what number a line
has? If you just want to know the number of one line, move the cursor to that line and type

:.=

For another approach, type:

:set number

and press <Enter>. As you can see, this displays the number of every line in the file. If you want to turn off
the display of line numbers, type:

:set nonumber

A number of special symbols can be used when specifying a range of lines. The . (period) stands for the
line where the cursor is currently positioned. For example, move the cursor to this line and type:

:1,.s/$/???/

This adds ??? to the end of every line from the start of the file to the line containing the cursor.

When you issue a substitute command with a range, it is all right if some of the lines in the range do not
contain the pattern you are replacing. When specifying a range of lines, $ stands for the last line in the file.
For example, the command:

:1,$s/the/THE/g

changes every the in the file to uppercase (including words like there, where the is part of another
word).

Checking as you substitute

What would you do now if you want to change the variable i into a k? You can't just use an instruction like

:254,267s/i/k/g

because that will change the letter i into k even in other words like int and list.

The solution to this is to add a c (for check) after the s command. For example,

:s/pattern/replacement/gc

When you do this, vi checks with you before making every substitution. Before each possible change, vi
prints the line at the bottom of your screen and puts a ^ under the string that might be changed. If you
want the change to happen, press the <Y> key followed by <Enter>. If you do not want the change to
happen, press the <N> key followed by <Enter>.

Advanced vi topics 279

280 z/OS: UNIX System Services User's Guide

Appendix B. Using awk

awk is a programming language that lets you work with information stored in files. With awk programs,
you can:

• Display all the information in a file, or selected pieces of information
• Perform calculations with numeric information from a file
• Prepare reports based on information from a file
• Analyze text for spelling, frequency of words or letters, and so on

You can combine these operations to perform quite complicated tasks.

awk allows most of the logical constructs of modern computing languages: if-else statements, while
and for loops, function calls, and so on.

This appendix introduces some of the principles and concepts of awk. The z/OS version of awk is based on
the POSIX definition of awk, and also supports the functionality of nawk, the new awk. Experienced
programmers may prefer to turn directly to the awk command description in z/OS UNIX System Services
Command Reference. For an excellent reference for awk, see The AWK Programming Language by Alfred V.
Aho, Peter J. Weinberger, and Brian W. Kernighan (Addison-Wesley, 1988). Aho, Weinberger, and
Kernighan are the people who created awk at AT&T Laboratories, and the name awk comes from their last
names.

Data files
awk programs work with data. Programs can obtain data typed in from the workstation or from the output
of other commands (for example, through pipes), but usually data is obtained from data files.

awk's data files are always text files (not binary files). The files contain readable text; for example, words,
numbers, and punctuation characters.

As an example, consider a data file named hobbies, which contains information on the hobbies of a
group of people. Each line in this file gives a person's name, one of that person's hobbies, how many hours
a week he or she spends on the hobby, and how much money the hobby costs per year. One hobby per
person appears on each separate line. The file might look like this:

 Jim reading 15 100.00
 Jim bridge 4 10.00
 Jim role playing 5 70.00
 Linda bridge 12 30.00
 Linda cartooning 5 75.00
 Katie jogging 14 120.00
 Katie reading 10 60.00
 John role playing 8 100.00
 John jogging 8 30.00
 Andrew wind surfing 20 1000.00
 Lori jogging 5 30.00
 Lori weight lifting 12 200.00
 Lori bridge 2 0.00

This file is included with the z/OS UNIX shell as /samples/hobbies.

Records
An awk data file is a collection of records. A record contains a number of pieces of information about a
single item; these pieces are called fields.

Records are separated by a record separator character, which, for awk, is usually the newline character.
The newline character shows where one line of text ends and another begins. By using the newline as a

© Copyright IBM Corp. 1996, 2018 281

record separator, each line of the file becomes a separate record. This is convenient and easy to
understand; newline is used as a record separator in all of the examples.

In the hobbies file, each line is a separate record, giving a set of information about one person's hobby.

Fields
A record consists of a number of fields. A field is a single piece of information. For example, the hobby
record:

Jim reading 15 100.00

contains four fields:

Jim
reading
15
100.00

Fields should be provided in the same order in each record. That way awk and other programs can easily
access a particular piece of information in any record.

The fields of a record are separated by one or more field separator characters. The hobbies file uses
strings of blank characters (spaces) to separate fields. By default, awk uses blanks or horizontal tab
characters to separate fields. You can change the default.

The shape of a program
An awk program looks like this:

pattern {actions}
pattern {actions}
pattern {actions}
 ...

Each line is a separate instruction. awk looks through the data files record by record and executes the
instructions, in the given order, on each record.

Simple patterns
An instruction of the form:

pattern {actions}

indicates that awk is to perform the given set of actions on every record that meets a certain set of
conditions. The conditions are given by the pattern part of the instruction.

The pattern of an instruction often looks for records that have a particular value in some field. The
notation $1 stands for the first field of a record, $2 stands for the second field, and so on. For example,
here's a simple awk instruction:

$2 == "jogging" { print }

The notation == stands for "is equal to". Therefore, the instruction means: If the second field in a record is
jogging, print the entire record.

This instruction is a complete awk program. If you ran this program on the hobbies file, awk would look
through the file record by record (line by line). Whenever a line had jogging as its second field, awk
would print the complete record. The printout from the program would be:

Katie jogging 14 120.00
John jogging 8 30.00
Lori jogging 5 30.00

282 z/OS: UNIX System Services User's Guide

Let's take another example. Ask yourself what the following awk program does.

$1 == "John" { print }

As you probably guessed, it prints every record that has John as its first field. The printout from the
program would be:

John role playing 8 100.00
John jogging 8 30.00

You could perform the same sort of search on any text database. The only difference is that databases
tend to contain a great deal more data than this example.

If an awk instruction does not contain an action, print is assumed. The preceding examples use the
print action; however, this action does not need to be written explicitly. You could write the programs as:

$2 == "jogging"

and:

$1 == "John"

and they would have exactly the same effect.

On the other hand, you can specify an action and leave out the pattern part of an instruction. In this case,
awk applies the action part of the instruction to every record in the file. For example:

{ print }

is a complete awk program that displays every record in the data file.

Using blanks and horizontal tabs
You can put any number of extra blanks or horizontal tabs into awk patterns and actions. For example, you
can enter:

{ print $1 , $2 , $3 }

Applying more than one instruction
When an awk program contains several instructions, awk applies every appropriate instruction to the first
record, then every appropriate instruction to the second record, and so on. Instructions are applied in
order. For example, consider the following awk program, which has two instructions:

$1 == "Linda"
$2 == "bridge" { print $1 }

The output of this program is:

Jim
Linda bridge 12 30.00
Linda
Linda cartooning 5 75.00
Lori

awk looks through the file record by record. The first record to satisfy one of the patterns is:

Jim bridge 4 10.00

so awk prints the first field of the record (as dictated by the second instruction). The next record of
interest is:

Linda bridge 12 30.00

Using awk 283

This satisfies the first instruction's pattern, so the whole record is printed. It also satisfies the second
instruction's pattern, so the first field is printed. awk continues through the file, record by record,
executing the appropriate actions when a record satisfies the pattern.

Assigning values to variables
Suppose you want to find out how many people have jogging as a hobby. To do this, you have to look
through the hobbies file, record by record, and keep a count of the number of records that have jogging
in their second field. This means that you have to remember the count from one record to the next.

awk programs remember information by using variables. A variable is a storage place for information.
Every variable has a name and a value. An awk action of the form:

name = value

assigns the specified value to the variable that has the given name. For example:

count = 0

assigns the value 0 to the variable count.

You can use variables in expressions. For example, the value of the expression:

count + 1

is the current value of count, plus 1.

String values
A string value is just a sequence of characters, like "abc". A string value is always enclosed in quotes. All
types of characters are allowed (even digits, as in "abc123"). Strings can contain any number of
characters. A string with zero characters is called the null string, and is written "".

When awk compares strings, it makes comparisons in accordance with the collating order set by the
locale that is defined on the system. This is a little like alphabetic order; for example, the program:

$1 >= "Katie"

prints the Katie, Linda, and Lori lines, which is what you would expect from alphabetic order.
However, collating orders differ. ASCII collating order, for example, differs from alphabetic order in a
number of respects; for example, lowercase letters are greater than uppercase ones, so that a is greater
than Z.

Numeric values
A numeric value consists of digits with an optional sign and decimal point. A numeric value is not enclosed
in quotes. For example:

10 0.34 –78 +2.56 –.92

are all valid in awk. awk does not let you put commas inside numbers. For example, you must write 1000
instead of 1,000.

Note: awk lets you use exponential or scientific notation. Exponents are given as e or E, followed by an
optionally signed exponent. Thus:

1E3 1.0e3 10E2 1000

are all equivalent.

When awk compares numbers (with such operators as > or <), it makes comparisons in accordance with
the usual rules of arithmetic.

284 z/OS: UNIX System Services User's Guide

Using the print action for output
So far, print has been the only action discussed. As you have seen, print can display an entire record.
It can also display selected fields of the record, as in:

$2 == "bridge" { print $1 }

This displays the first field of every record with a second field that is bridge. The output is:

Jim
Linda
Lori

print can display more than a single field. If you give print a list of fields separated by commas, as in:

$1 == "Jim" { print $2,$3,$4 }

print displays the given fields separated by single blanks, as in:

reading 15 100.00
bridge 4 10.00
role playing 5 70.00

The print action can display strings and numbers along with fields. For example:

$1 == "John" { print "$",$4 }

prints:

$ 100.00
$ 30.00

In this instruction, the print action prints a string containing a $, followed by a blank, followed by the
value of the fourth field in each selected record.

As an exercise, predict the output of the following:

(a) $1 == "Lori" { print $1,"spends $", $4,"on",$2 }
(b) $2 == "jogging" { print $1,"jogs",$3,"hours a week" }
(c) $4 > 100.00 { print $1, "has an expensive hobby" }

You can check your predictions by running these programs against the hobbies file.

Running awk programs
There are two ways to run awk programs: from a command line and from a program file.

The awk command line
The simplest awk command line is:

awk 'program' datafile

The awk program is enclosed in single-quote or apostrophe (') characters. The datafile argument gives
the name of the data file. For example:

awk '$1 == "Linda"' hobbies

executes the program:

$1 == "Linda"

on the data file hobbies.

Using awk 285

If you are using the z/OS shell, you can type in a multiline program within single quotation marks, as in:

awk '
 $1 == "Linda"
 $2 == "bridge" { print $1 }
 ' hobbies

awk assumes that blanks or horizontal tabs separate fields in a record. If the data file uses different field
separator characters, you must indicate this on the command line. You can do this with an option of the
form:

–Fstring

where string lists the characters used to separate fields. For example:

awk –F":" '{ print $3 }' file.dat

indicates that the given data file uses colon (:) characters to separate record fields. The –F option must
come before the quoted program instructions.

awk also allows you to define the value of variables on the command line by using the –v option. See z/OS
UNIX System Services Command Reference for details.

Program files
A program file is a text file that contains an awk program. You can create program files with any text editor
(such as ed). For example, you might create a file named lbprog.awk that contains the lines:

$1 == "Linda"
$2 == "bridge" { print $1 }

To execute a program on a particular data file, use the command:

awk –f progfile
datafile

where progfile is the name of the file that contains the awk program, and datafile is the name of the data
file. For example:

awk –f lbprog.awk hobbies

runs the program in lbprog.awk on the data in hobbies.

If the data file does not use the default separator characters, you must specify a –F option after the
progfile name, as in:

awk –f prog.awk –F":" file.dat

To gain some experience using awk, you can test the examples on the hobbies file. Run some from the
command line and some from program files.

Sources of data
If you do not specify a data file on the command line, awk begins to read data from standard input. For
example, if you enter the command:

awk '{ print $1 }'

awk prints the first word of every line you type. When you type in data from the workstation, press
<Enter> at the end of each line. To stop passing data to awk, type <EscChar-D> and press <Enter>.

A command line may also specify several data files, as in:

awk -f progfile data1 data2 data3 ...

286 z/OS: UNIX System Services User's Guide

When awk has finished reading through the first data file data1, it goes on to data2, and so on.

Operators
awk recognizes these types of operators:

• Comparison operators
• Arithmetic operators
• Compound assignments
• Increment and decrement operators
• Matching operators
• Multiple-condition operators

Comparison operators
The == notation is an example of a comparison. awk recognizes several types of comparisons:

Operator Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Arithmetic operators
The following awk program uses simple arithmetic:

$3 > 10 { print $1, $2, $3–10 }

In the print statement:

$3–10

has the value of the third field in the record, minus 10. This is the value that print prints. If you apply this
program to the hobbies file, the output is:

Jim reading 5
Linda bridge 2
Katie jogging 4
Andrew wind surfing 10
Lori weight lifting 2

You could describe how the program works like this: If someone spends more than 10 hours on a hobby,
the program prints the person's name, the name of the hobby, and how many extra hours the person
spends on the hobby (that is, the number of hours more than 10).

An expression such as:

$3–10

is called an arithmetic expression. It performs an arithmetic operation and comes up with a result, which
is called the value of the expression.

awk recognizes the following arithmetic operations:

Using awk 287

Operation Operator Example

Addition A + B 2+3 is 5

Subtraction A – B 7–3 is 4

Multiplication A * B 2*4 is 8

Division A / B 6/3 is 2

Negation – A – 9 is –9

Remainder A % B 7%3 is 1

Exponentiation A ^ B 3^2 is 9

The remainder operation is also known as the modulus, or integer remainder operation. The value of this
expression is the integer remainder you get when you divide A by B. For example:

7 % 3

has a value of 1, because dividing 7 by 3 gives you 2 with a remainder of 1.

The value for the exponentiation operation:

A ^ B

is the value of A raised to the exponent B. For example:

3 ^ 2

has the value 9 (that is, 32).

Operation ordering

Expressions can contain several operations, as in:

A+B*C

As is customary in mathematics, all multiplications and divisions and remainder operations are performed
before additions and subtractions. When handling the foregoing expression, awk performs B*C first and
then adds A. The value of:

2+3*4

is therefore 14 (3*4 first, then add 2). If you want a particular operation done first, enclose it in
parentheses, as in:

(A+B)*C

When evaluating this expression, awk performs the addition before the multiplication. Therefore:

(2+3)*4

is 20 (2+3 first, then multiply by 4). As an example of this, consider the program:

{ print $4/($3*52) }

$4 is the amount of money a person spent on a hobby in the last year. $3 is the average number of hours a
week the person spent on that hobby, so $3*52 is the number of hours in 52 weeks (that is, 1 year). $4/
($3*52) is therefore the amount of money that the person spent on the hobby per hour.

An order-of-operations table for awk can be found in the awk command description in z/OS UNIX System
Services Command Reference.

288 z/OS: UNIX System Services User's Guide

Compound assignments
The following are the compound assignment operations of awk and their equivalents:

Compound operation Equivalent

A += B A = A + B

A –= B A = A – B

A *= B A = A * B

A /= B A = A / B

A %= B A = A % B

A ^= B A = A ^ B

Increment and decrement operators
You can advance the value held in a variable, with:

count = count + 1

This is such a common operation that awk has a special operator for incrementing variables by 1.
++

The ++ operator increments the current value of the variable by 1. For example:

count++

adds 1 to the current value of count.
–␠–

The –␠– decrements (subtracts 1 from) the current value of a variable. For example, to subtract 1
from count, write:

count--

Matching operators
If the pattern in an instruction is just a regular expression, awk looks for a matching string anywhere in a
record. Sometimes, however, you want to look for a matching string only in a particular field of a record. In
this case, you can use a matching expression.

There are two types of matching expressions:
string ~ /regular-expression/

Is true if string matches the given regular expression. (The ~ character is called a tilde.)
string !~ /regular-expression/

Is true if string does not match the given regular expression.

Multiple-condition operators
Operator

Meaning
&&

The double ampersand operator means AND. For example:

$3 > 10 && $4 > 100.00 { print $1, $2 }

prints the first and second fields of any record where $3 is greater than 10 and $4 is greater than
100.00.

Using awk 289

||
The double "or-bar" operator means OR. For example:

$1 == "Linda" || $1 == "Lori"

prints any record with a first field that is either Linda or Lori.

Regular expressions
A regular expression is a way of telling awk to select records that contain certain strings of characters. For
example, the instruction:

/ri/ { print }

tells awk to print all records that contain the string ri. Regular expressions are always enclosed in
slashes, as shown in the instruction just discussed. For a discussion of regular expressions beyond their
usage in awk, see Regular expressions (regexp) in z/OS UNIX System Services Command Reference.

The following characters have special meanings when you use them in regular expressions:
Character

Meaning
^

Stands for the beginning of a field. For example:

$2 ~ /^b/ { print }

Prints any record whose second field begins with b.
$

Stands for the end of a field. For example:

$2 ~ /g$/ { print }

prints any record with a second field that ends with g.
.

Matches any single character (except the newline). For example:

$2 ~ /i.g/ { print }

selects the records with fields containing ing, and also selects the records containing bridge (idg).
|

Means or. For example:

/Linda|Lori/

is a regular expression that matches either of the strings Linda or Lori.
*

Indicates zero or more repetitions of a character. For example:

/ab*c/

matches abc, abbc, abbbc, and so on. It also matches ac (zero repetitions of b). Since . matches any
character except the newline, .* matches an arbitrary string of zero or more characters. For example:

$2 ~ /^r.*g$/ { print }

prints any record with a second field that begins with r, ends in g, and has any set of characters
between (for example, reading and role playing).

290 z/OS: UNIX System Services User's Guide

+
Is similar to *, but stands for one or more repetitions of a character. For example:

/ab+c/

matches abc, abbc, and so on, but does not match ac.
\{m,n\}

Indicates m to n repetitions of a character (where m and n are both integers). For example:

/ab\{2,4\}c/

would match abbc, abbbc, and abbbbc, and nothing else.
?

Is similar to *, but stands for zero or one repetitions of a string. For example:

/ab?c/

matches ac and abc, but not abbc, and so on.
[X]

Matches any one of the set of characters X given inside the square brackets. For example:

$1 ~ /^[LJ]/ { print }

prints any record whose first field begins with either L or J. As a special case: [:lower:] inside the
square brackets stands for any lowercase letter, [:upper:] inside the square brackets stands for any
uppercase letter, [:alpha:] inside the square brackets stands for any letter, and [:digit:] inside
the square brackets stands for any digit.

Thus:

/[[:digit:][:alpha:]]/

matches a digit or letter.

[^X]
Matches any one character that is not in the set X. For example:

$1 ~ /^[^LJ]/ { print }

prints any record with a first field that does not begin with L or J.

$1 ~ /^[^[:digit:]]/ { print }

prints any record with a first field that does not begin with a digit.
(X)

Matches anything that the regular expression X does. You can use parentheses to control how other
special characters behave. For example, * normally applies to the single character immediately
preceding it. This means that:

/abc*d/

matches abd, abcd, abccd, and so on. However:

/a(bc)*d/

matches ad, abcd, abcbcd, abcbcbcd, and so on.

The characters with special meanings are:

^ $. * + ? [] () |

Using awk 291

These are known as metacharacters.

When a metacharacter appears in a regular expression, it usually has its special meaning. If you want to
use one of these characters literally (without its special meaning), put a backslash in front of the
character. For example:

/\$1/ { print }

prints all records that contain a dollar sign $ followed by a 1. If you simply entered:

/$1/ { print }

awk would search for records where the end of the record was followed by a 1, which is impossible.

Because the backslash has this special meaning, \ is also considered a metacharacter. If you want to
create a regular expression that matches a backslash, you must therefore use two backslashes \\.

Pattern ranges
An instruction of the form:

pattern1, pattern2 { action }

performs the given action on every line, starting at an occurrence of pattern1 and ending at the next
occurrence of pattern2 (inclusive). For example, the instruction

/Jim/, /Linda/ { print $2 }

prints the second field of all lines between an occurrence of Jim and an occurrence of Linda. Using the
hobbies file as our data file, the output is:

reading
bridge
role playing
bridge

When awk finds a record matching pattern2, it begins to look for a line matching pattern1 again. Thus,
with this instruction:

/reading/, /role/

the output is

Jim reading 15 100.00
Jim bridge 4 10.00
Jim role playing 5 70.00
Katie reading 10 60.00
John role playing 8 100.00

awk prints the first range of records from reading to role and then starts looking for reading again.

awk starts performing the instruction's action as soon as there is a record that matches pattern1. awk
does not check to make sure that there is a line matching pattern2 in the rest of the file. This means that:

/Lori/, /Jim/ { print $2 }

begins printing at the first record that contains Lori, and keeps going until it reaches the end of the file.
No Jim is found.

Using special patterns
BEGIN and END are two special patterns.

292 z/OS: UNIX System Services User's Guide

BEGIN
When an instruction has BEGIN as its pattern, awk performs the associated action before looking at
any of the records in the data file.

END
When an instruction has END as its pattern, awk performs the associated action after looking at all
records in the data files specified on the command line.

Consider the action:

count = count + 1

awk first finds the value of:

count + 1

and then assigns this value to count. Thus this action increases the value of count by 1. In a program, you
can use this sort of action to count how many people have jogging as a hobby:

BEGIN { count = 0 }
$2 == "jogging" { count = count + 1 }
END { printf "%d people like jogging.\n", count }

Let's look at this program line by line.

BEGIN { count = 0 }

In this example, awk begins by assigning the value 0 to count:

$2 == "jogging" { count = count + 1 }

adds 1 to count every time awk finds a record with jogging in the second field.

END { printf "%d people like jogging.\n", count }

When awk has looked at all the records, the printf action prints the count of people who jog. The output
from the program is:

3 people like jogging.

Notice how the value of count was printed in place of the %d placeholder. For more information about
using a placeholder, see “Placeholders” on page 301.

Built-in variables
awk has a number of built-in variables that you can use in your programs. You do not have to assign values
to these variables; awk automatically assigns the values for you.

Built-in numeric variables
The following list describes some of the important numeric built-in variables:
NR

Contains the number of records that have been read so far. When awk is looking at the first record, NR
has the value 1; when awk is looking at the second record, NR has the value 2; and so on. In a BEGIN
instruction, NR has the value 0. In an END instruction, NR contains the total number of records that
were read. This instruction:

END { print NR }

prints the total number of data records read by the awk program.

Using awk 293

FNR
Is like NR, but it counts the number of records that have been read so far from the current file. When
you give several data files on the awk command line, awk sets FNR back to 1 when it begins reading
each new file. Thus, a command such as:

{ printf "%d:%s\n",FNR,$0 }

prints the line number in the current file, followed by a colon, followed by the contents of the current
line.

NF
Gives the number of fields in the current record. For the hobbies file, NF is 4 for each line, because
there are four fields in each record. In an arbitrary text file, NF gives the number of words on the
current line in the file; by default, awk assumes that blanks separate the fields of a record, so it
considers each word on a line to be a separate field. Therefore, the program:

{ count = count + NF }
END { print count }

prints the total number of words in the file.
Using these built-in variables, you can create more ambitious awk commands.

awk 'NF == 1 {print}' file

prints those records with precisely one field in them. There is no –F option specified for this command, so
awk assumes that blanks or tab characters separate the fields. The foregoing command therefore prints
all lines that contain only one word (that is, one field).

awk '{print FNR ": " $0}' file

$0 stands for the entire record. The foregoing command displays the contents of file, putting a line
number and a colon before each line.

awk '/abc/ {print FILENAME ": " $0}' *.bas

examines all files that have the .bas extension in the working directory. It prints every line that contains
the string abc and also displays the filename, so you know which file contains which lines.

Built-in string variables
awk also provides a number of built-in string variables:
FILENAME

Contains the name of the current input file. For example, when running programs against the hobbies
file, the value of FILENAME would be hobbies (if that is the file you are using). If the input is coming
from the awk standard input, the value is -.

FS
Is the field separator string, giving the character that is used to separate fields in the current file. The
default value for FS is "" (a single blank), which as a special case matches both blank and tab.
However, if the command line contains an –F option specifying a different field separator, FS is a
string containing the given separator character. A program may also assign values to FS to indicate
new field separator characters. For example, you could create a data file with a first line that provides
the character used to separate fields in the records in the rest of the file. An awk program could then
contain the instruction:

FNR == 1 { FS = $0 }

This says that the field separator string FS should be assigned the contents of the first record in the
current data file. The character in this line is then taken to be the field separator for the rest of the file
(unless FS changes value again). Any FS value of more than one character is used as a regular
expression. For details, see the Input topic of the awk command description in z/OS UNIX System
Services Command Reference.

294 z/OS: UNIX System Services User's Guide

RS
Is the input record separator. Just as FS indicates the character that separates fields within records,
RS indicates the character that separates one record from another. By default, RS contains a newline
character, which means that input records are separated by newlines. However, you can assign a
different character to RS; for example, with:

RS = ";"

input records are separated by semicolons. This lets you have several records on a single line, or a
single record that extends over several lines. Records are separated by a semicolon, not a <newline>
character. As an important special case:

RS = ""

separates records by empty lines.
OFS

Gives the output field separator string. When you use the print action to print several values, as in:

{ print A, B, C }

awk prints the output field separator string between each of the values. By default, OFS contains a
single blank character, which is why output values are separated by a single blank. However, if you
make the assignment:

OFS = " : "

the output values are separated by the given string. You can also use OFS to reconstruct the $0 field
during field assignment.

ORS
Gives the output record separator. When you use the print action to print records, awk prints the
output record separator at the end of each record. By default, ORS is the newline character, which is
why print prints a new output line each time it is called. However, you can use a different separator
string by assigning the string to ORS.

OFMT
Is the default output format for numbers when they are displayed by print. This is a format string like
the one used by printf. By default, it is %.6g, indicating that numbers are to be displayed with a
maximum of six digits after the decimal point. By changing OFMT, you can obtain more or less
displayed precision.

CONVFMT
Is the default format which awk uses when converting numbers into strings internally. This differs
from the OFMT variable, which is used only when displaying numbers. The internal conversion of a
number to a string occurs when you perform concatenation, indexing, and some comparison
operations. awk converts floating-point numbers (numbers that are not integers) to strings as if you
had specified the operation:

sprintf(CONVFMT, number ...)

By default, the value of CONVFMT is %.6g.

Note: CONVFMT is a POSIX extension not found in traditional implementations of awk.

Statements and loops
awk supports the following types of statements and loops:

• if statement
• while loop
• for loop

Using awk 295

• next statement
• exit statement

The if statement
An if statement is an action of the form:

if (expression) statement1 else
statement2

Typically, the expression in the if statement has a true-or-false value. If the value is true, statement1 is
performed; otherwise, statement2 is performed. The else statement2 part is optional.

The while loop
A while loop repeats one or more other instructions as long as a given condition holds true. The format of
the loop is:

while (expression) statement

where the statement can be a single statement or a compound statement.

The for loop
The statement:

for
(expression1;expression2;expression3)
statement

is equivalent to the following instruction sequence:

expression1
while (expression2) {
 statement
 expression3
}

The next statement
The next instruction skips immediately to the next record in the data file.

The exit statement
The exit statement makes an awk program behave as if it had just reached the end of data input. No
further input is read. If there is an END action, awk executes it before the program ends. As with next,
exit is often used when input data is found to be incorrect.

If exit appears inside the END action, the program ends immediately.

Functions
awk supports:

• Arithmetic functions
• String manipulation functions
• User-defined functions
• Passing an array to a function
• The getline function

296 z/OS: UNIX System Services User's Guide

Arithmetic functions
awk recognizes the most common mathematical functions, as shown in the following table.

Function Result

sqrt(x) Square root of x

sin(x) Sine of x, where x is in radians

cos(x) Cosine of x, where x is in radians

atan2(y,x) Arctangent of y/x in range -π to π

log(x) Natural logarithm of x

exp(x) The constant e to the power x

int(x) Integer part of x

rand() Random number between 0 and 1

srand(x) Sets x as seed for rand()

Several of these functions may require more explanation.

The int function takes a floating-point number as an argument and returns an integer. The integer is just
the floating-point number, without its fractional part.

Every call to rand returns a new random number between 0 and 1. In this way, you can get a sequence of
random numbers. You can use srand to set the starting point, or seed, for a random number sequence. If
you set the seed to a particular value, you always get the same sequence of numbers from rand. This is
useful if you want a program to use rand but obtain uniform results every time the program runs.

String manipulation functions
awk has a number of functions that perform string operations:
length

Returns an integer that is the length of the current record (that is, the number of characters in the
record, without the newline on the end). For example, the following program calculates the total
number of characters in a file (except for newline characters):

 { sum = sum + length }
END { print sum }

length(s)
Returns an integer that is the length of the string s. For example, the following program prints the
length of the first field in each record of the file:

{ print length($1) }

The function call length($0) is equivalent to just length.
gsub(regexp,replacement)

Puts the replacement string replacement in place of every string matching the regular expression
regexp in the current record. For example, the program:

{
 gsub(/John/,"Jonathan")
 print
}

checks every record in the data file for the regular expression John, replaces matching strings with
Jonathan, and prints the resulting record. As a result, the program's output is exactly like its input,
except that every occurrence of John is changed to Jonathan. This form of the gsub function returns
an integer telling how many substitutions were made in the current record. This is 0 if the record has
no strings that match regexp.

Using awk 297

sub(regexp,replacement)
Is similar to gsub, except that it replaces only the first occurrence of a string matching regexp in the
current record.

gsub(regexp,replacement,string_var)
Puts the replacement string replacement in place of every string matching the regular expression
regexp in the string string_var. For example, the program:

{
 gsub(/John/,"Jonathan",$1)
 print
}

is similar to the previous program, but the replacement is made only in the first field of each record.
This form of the gsub function returns an integer telling how many substitutions were made in
string_var.

sub(regexp,replacement,string_var)
Is similar to the previous version of gsub, except that it only replaces the first occurrence of a string
matching regexp in the string string_var.

Note: You must use four backslashes to embed one literal backslash in a gsub() or sub()
substitution string. For example,

gsub(/backslash/,"\\\\")

replaces all occurrences of the word backslash with the single character \.

index(string,substring)
Searches the given string for the appearance of the given substring. If it cannot find substring, index
returns 0; otherwise, index returns the number (origin 1) of the character in string where substring
begins. For example:

index("abcd","cd")

returns the integer 3 because cd is found beginning at the third character of abcd.
match(string,regexp)

Determines if string contains a substring that matches the regular expression (pattern) regexp. If so,
the function returns an index giving the position of the matching substring within string; if not, match
returns 0. match also sets a variable named RSTART to the index where the matching string starts,
and a variable named RLENGTH to the length of the matching string.

substr(string,pos)
Returns the last part of string, beginning at a particular character position. The argument pos is an
integer, giving the number of a character. Numbering begins at 1. For example, the value of:

substr("abcd",3)

is the string cd.
substr(string,pos,length)

Returns the part of string that begins at the character position given by pos and has the length given
by length. For example, the value of:

substr("abcdefg",3,2)

is cd (a string of length 2 beginning at position 3).
sprintf(format,value1,value2,...)

Is based on the printf action. The value of sprintf is the string that would be printed out by the
action

printf(format,value1,value2,...)

298 z/OS: UNIX System Services User's Guide

For example:

str = sprintf("%d %d!!!\n",2,3)

assigns the string "2 3!!!\n" to the string variable str.
tolower(string)

Returns the value of string, but with all the letters in lowercase. (This function is an extension to
standard awk.)

toupper(string)
Returns the value of string, but with all the letters in uppercase. (This function is an extension to
standard awk.)

ord(string)
Converts the first character of string into a number. This number gives the decimal value of the
character in the character set used on the system. (This function is an extension to standard awk.)

User-defined functions
In an awk program, a function definition looks like this:

function name(argument-list) {
 statements
}

The argument-list is a list of one or more names (separated by commas) that represent argument values
passed to the function. When an argument name is used in the statements of a function, it is replaced by a
copy of the corresponding argument value.

For example, the following is a simple function that takes a single numeric argument N and returns a
random integer between 1 and N (inclusive):

function random(N) {
 return (int(N * rand() + 1))
}

Passing an array to a function
When an array is passed as an argument to a function, it is passed by reference. This means that the
function works with the actual array, not with a copy. Anything that the function does to the array has an
effect on the original array. split is a built-in function that takes an array as an argument.
split(string,array)

split breaks up string into fields, and assigns each of the fields to an element of array. The first field
is assigned to array[1], the next to array[2], and so on. Fields are assumed to be separated with the
field separator string FS. If you want to use a different field separator string, you can use:

split(string,array,fsstring)

where fsstring is the field separator string you want to use instead of FS. The result of split is the
number of fields that string contained.

Note: split actually changes the elements of array. When an array is passed to a function, the function
may change the array elements.

The Getline function
The getline function reads input from the current data file or from a different file.

Using awk 299

Running system commands
You can run commands with the system function:

system("command line")

runs the given command line: For example:

system("cd XYZ")

runs a cd command to change the working directory.

Controlling awk output
By default, awk output is written to your workstation screen. You can save the output of an awk program
in a file by using output redirection. To do this, put:

>filename

on the end of any awk command line. For example:

awk –f progfile datafile >outfile

writes all the output from the awk program to a file named outfile. In this case, the output does not
appear on the workstation screen.

Formatting the output
The output of the program:

$1 == "Jim" { print "$", $4/52 }

is:

$ 1.92308
$ 0.192308
$ 1.34615

This output shows the amount of money per week that Jim spent on his hobbies. However, money
amounts usually have only two digits after the decimal point. How can you change the program to make
the money amounts appear more normal? The answer is to use the printf action instead of print. This
lets you specify the format in which awk prints the output.

A printf action looks like this:

{ printf format-string, value, value, ... }

The format-string indicates the output format. The values are the data to be printed.

A format string contains two kinds of items:

• Normal characters, which are just printed out as is
• Placeholders, which awk replaces with values given later in the printf action

As an example, try running the following program on the hobbies file:

$2 == "bridge" { printf "%5s plays bridge\n", $1 }

awk prints:

 Jim plays bridge
Linda plays bridge
 Lori plays bridge

300 z/OS: UNIX System Services User's Guide

The format string:

"%5s plays bridge\n"

has one placeholder: %5s. When printf prints its output, replacing the placeholder with the value $1,
which is the first field of the record being examined. The rest of the format string is just printed out as is.

Note: The format string ends in \n; for more information, see “Escape sequences” on page 302.

Placeholders
The form of the placeholder %5s tells awk how to print the associated value. All placeholders begin with %
and end in a letter. The following are some of the most common letters used in placeholders:
c

If the associated value is an integer, printf prints the character in the native character set that has
that integer value; if the associated value is a string, printf prints the first character of the string.

d
An integer in decimal form (base 10).

e
A floating-point number in scientific notation, as in -d.ddd dddE+dd.

f
A floating-point number in conventional form, as in -ddd.ddd ddd.

g
A floating-point number in either e or f form, whichever is shorter; also, nonsignificant zeros are not
printed.

o
An unsigned integer in octal form (base 8).

s
A string.

x
An unsigned integer in hexadecimal form (base 16).

For example, the format string:

"%s %d\n"

contains two placeholders: %s represents a string, and %d represents a decimal integer.

Between the % and the letter at the end of the placeholder, you can put additional information. If you put
an integer, as in %5s, the number is used as a width. awk prints the corresponding value using (at least)
the given number of characters. Therefore in:

$2 == "bridge" { printf "%5s plays bridge\n", $1 }

the value of the string $1 replaces the placeholder %5s and is always printed using five characters. The
output is therefore:

 Jim plays bridge
Linda plays bridge
 Lori plays bridge

as shown before. If you just write:

$2 == "bridge" { printf "%s plays bridge\n", $1 }

without the 5, the output is:

Jim plays bridge
Linda plays bridge
Lori plays bridge

Using awk 301

If no width is given, awk prints values using the smallest number of characters possible.

awk also lets you put a minus sign (–) in front of the number in the width position. The amount of output
space is the same, but the information is left-justified. For example:

$2 == "bridge" { printf "%–5s plays bridge\n", $1 }

prints:

Jim plays bridge
Linda plays bridge
Lori plays bridge

A placeholder for a floating-point number can also contain a precision. You can write this as a dot (decimal
point) followed by an integer. Specifying a precision tells printf how many digits to print after the
decimal point in a floating-point number. For example, in:

$1 == "John" { printf "$%.2f on %s\n", $4 * 1.05, $2 }

the placeholder %.2f indicates that printf is to print all floating-point numbers with two digits after the
decimal point. The output of this program is:

$105.00 on role playing
$31.50 on jogging

For good-looking output, you might specify both a width and a precision. For example, the program:

$1 == "John" { printf "$%6.2f on %s\n", $4 * 1.05, $2 }

prints the following:

$105.00 on role playing
$ 31.50 on jogging

%6.2f indicates that the corresponding floating-point value should be printed with a width of six
characters, with two characters after the decimal point.

Here are a few more awk programs that work on the hobbies file. Predict what each prints and run them
to see if your prediction is right:

(a) { printf "%6s %s\n", $1, $2 }
(b) { printf "%20s: %2d hours/week\n", $2, $3 }
(c) $1=="Katie" { printf "%20s: $%6.2f\n",$2,$4 }

Escape sequences
All the format strings shown so far have ended in \n. This kind of construct is called an escape sequence.
All escape sequences are made from a backslash character (\) followed by one to three other characters.

Escape sequences are used inside strings, not just those for printf, to represent special characters. In
particular, the \n escape sequence represents the newline character. A \n in a printf format string tells
awk to start printing output at the beginning of a newline.

The following list shows escape sequences that can be used in awk strings:

Escape ASCII character

\a Audible bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

302 z/OS: UNIX System Services User's Guide

Escape ASCII character

\t Horizontal tab

\v Vertical tab

\ooo ASCII character, octal ooo

\xdd Hexadecimal value dd

\" Quote

\c Any other character c

Using awk 303

304 z/OS: UNIX System Services User's Guide

Appendix C. Code page conversion when the shell
and MVS have different locales

A code page for a specific character set determines the graphic character produced for each hexadecimal
encoding. The code page used is determined by the programs and national languages being used.

If the shell is using a locale generated with code pages IBM-1047, IBM-1027, or IBM-939, an application
programmer needs to be concerned about variant characters in the POSIX portable character set whose
encoding may vary from other EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

For example, the encodings for the square brackets do not match on code pages IBM-037 and IBM-1047:

• Left square bracket: [
• Right square bracket:]

Customizing the variant characters on your keyboard
Assuming that you are not using an APL character set, on many programmable workstations you can
customize your keys so that you have hexadecimal encodings for the variant characters that match the
shell-supported code pages. For example, for those brackets the compatible encodings would be:

X'AD' for a left square bracket ([)
X'BD' for a right square bracket (])

Using the CONVERT option on the OMVS command
The OMVS command has a CONVERT option that lets you specify a conversion table for converting
between code pages. The table you want to specify depends on the code pages you are using in MVS and
in the shell. For example, if you are using code page IBM-037 in MVS and code page IBM-1047 in the
shell, specify the following when you enter the OMVS command:

OMVS CONVERT((BPXFX111))

For more information, see the OMVS command description in z/OS UNIX System Services Command
Reference.

© Copyright IBM Corp. 1996, 2018 305

When do you need to convert between code pages?
If you are using code page IBM-037 in MVS and the shell is using code page IBM-1047, you need to
convert from one code page to another when:

• Transferring files between a workstation and the file system.
• Copying data between MVS data sets and the file system.
• Passing JCL pathname data to z/OS UNIX programs—unless you restrict yourself to characters in the

POSIX portable file name character set.
• Passing JCL parameters and pathnames to a shell invoked from a batch program—unless you restrict

yourself to characters in the POSIX portable file name character set.
• Converting between ASCII and EBCDIC when using the pax utility.

Methods for converting data
There are several methods for converting data to or from a shell-supported code page:

• To convert data you are typing at a 3270 terminal, you specify a conversion table other than BPXFX100
(the null conversion table) with the OMVS command. The data you type at your workstation when you
are working in the shell is converted to a shell-supported code page.

• To convert data between code pages IBM-037 and IBM-1047 when you are moving the data to or from
the hierarchical file system, you can use the CONVERT option on the OPUT, OGET, and OCOPY
commands.

• To convert double-byte or single-byte data to a selected code page while you are working in MVS, use
the z/OS XL C/C++ iconv utility. For information on how to use this utility, see z/OS XL C/C++ User's
Guide.

• To convert double-byte or single-byte data to a selected code page while you are working in the shell,
use the shell iconv utility.

The POSIX portable file name character set
To simplify conversion requirements, use the POSIX portable file name character set when naming your
files:

Uppercase A to Z
Lowercase a to z
Numbers 0 to 9
Period (.)
Underscore (_)
Hyphen (-)

The POSIX portable character set
The POSIX portable character set consists of

Uppercase A to Z
Lowercase a to z
Numbers 0 to 9

and these characters:

306 z/OS: UNIX System Services User's Guide

Characters

+ < = >

$ ` ^ ~

% & *

@ [] \

{ } | !

" ' ()

, _ - .

/ : ; ?

Code page conversion when the shell and MVS have different locales 307

308 z/OS: UNIX System Services User's Guide

Appendix D. Escape sequences for a 3270 keyboard

When using a 3270 keyboard, you can use escape sequences to type:

• Portable characters not included on your keyboard. See “Escape sequences for portable characters not
on your keyboard” on page 309.

• Control characters that are normally available on ASCII workstations, but not EBCDIC ones. See
“Escape sequences for control characters” on page 310.

The notation EscChar coupled with another letter (for example, <EscChar> m) indicates an escape
sequence.

Escape sequences for portable characters not on your keyboard
If you do not have keys on your keyboard for the following portable characters, you can use an escape
sequence to obtain them. Table 13 on page 309 lists the escape sequences for the portable characters.

Table 13: Portable characters: Escape sequences

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> @
<EscChar> 0

<NUL> Ctrl-@

<EscChar> g
<EscChar> G

<alert> Ctrl-G

<EscChar> h
<EscChar> H

<backspace> Ctrl-H

<EscChar> i
<EscChar> I

<tab> Ctrl-I

<EscChar> j
<EscChar> J

<newline> Ctrl-J

<EscChar> k
<EscChar> K

<vertical-tab> Ctrl-K

<EscChar> l
<EscChar> L

<form-feed> Ctrl-L

<EscChar> m
<EscChar> M

<carriage-return> Ctrl-M

<EscChar> ([[

<EscChar>)]]

<tab> character: When you are writing makefiles for the make utility, you need to use a <tab>
character. If you are using a shell editor, you can type a <tab> character as an <EscChar-I> sequence.
After you press <Enter>, the tab displays as blank space.

© Copyright IBM Corp. 1996, 2018 309

If you are using the ISPF editor, you cannot type a <tab> character (ISPF handles only displayable
characters).

Escape sequences for control characters
To obtain the control characters listed in Table 14 on page 310, you must use an escape sequence.

Table 14: Control characters: Escape sequences

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> f
<EscChar> F

<ACK> Ctrl-F

<EscChar> x
<EscChar> X

<CAN> Ctrl-X

<EscChar> q
<EscChar> Q

<DC1> Ctrl-Q

<EscChar> r
<EscChar> R

<DC2> Ctrl-R

<EscChar> s
<EscChar> S

<DC3> Ctrl-S

<EscChar> t
<EscChar> T

<DC4> Ctrl-T

<EscChar> p
<EscChar> P

<DLE> Ctrl-P

<EscChar> y
<EscChar> Y

 Ctrl-Y

<EscChar> e
<EscChar> E

<ENQ> Ctrl-E

<EscChar> d
<EscChar> D

<EOT> Ctrl-D

<EscChar> 2
<EscChar> [

<ESC> Ctrl-[

<EscChar> w
<EscChar> W

<ETB> Ctrl-W

<EscChar> c
<EscChar> C

<ETX> Ctrl-C

<EscChar> 6
<EscChar> _

<IS1> Ctrl-_

310 z/OS: UNIX System Services User's Guide

Table 14: Control characters: Escape sequences (continued)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> 5 <IS2> Ctrl-^

<EscChar> 4
<EscChar>]

<IS3> Ctrl-]

<EscChar> 3
<EscChar>

<IS4> Ctrl-\

<EscChar> u
<EscChar> U

<NAK> Ctrl-U

<EscChar> o
<EscChar> O

<SI> Ctrl-O

<EscChar> n
<EscChar> N

<SO> Ctrl-N

<EscChar> a
<EscChar> A

<SOH> Ctrl-A

<EscChar> b
<EscChar> B

<STX> Ctrl-B

<EscChar> z
<EscChar> Z

<SUB> Ctrl-Z

<EscChar> v
<EscChar> V

<SYN> Ctrl-V

Escape sequences unique to a conversion table
Depending on the conversion table that you specify with the CONVERT keyword on the OMVS command,
you may need to type a unique escape sequence to enter a character. This information shows how unique
escape sequences are translated by each of the character conversion tables. The translations for escaped
alphabetic characters (which are the same for all tables—these are Ctrl-A through Ctrl-Z) are not shown in
these tables.

BPXFX100 conversion table
Table 15 on page 311 shows the escape sequences for certain characters that may not be on your
keyboard.

Table 15: Translation of selected escaped characters (BPXFX100)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> #
<EscChar> 7

 Ctrl-?

Escape sequences for a 3270 keyboard 311

Table 15: Translation of selected escaped characters (BPXFX100) (continued)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> { [[

]]

<EscChar> ¬ <IS2> Ctrl-^

BPXFX111 and BPXFX211 conversion tables
Table 16 on page 312 shows the escape sequences for certain characters that might not be on your
keyboard.

Table 16: Translation of selected escaped characters (BPXFX111 and BPXFX211)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> #
<EscChar> 7

 Ctrl-?

<EscChar> { [[

]]

<EscChar> ¬ <IS2> Ctrl-^

BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480,
BPXFX484, BPXFX485, BPXFX497 conversion tables

Conversion tables BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480,
BPXFX484, BPXFX485, and BPXFX497 have the escape sequences listed in Table 17 on page 312 for
certain characters that might not be on your keyboard.

Table 17: Translation of selected escaped characters (BPXFX437, BPXFX450, BPXFX471, BPXFX473,
BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497). (BPXFX437, BPXFX450,
BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> 7

 Ctrl-?

<EscChar> - ~

<EscChar> % @

<EscChar> & $

<EscChar> ;
<EscChar> !

|

<EscChar> ' ^

<EscChar> = #

<EscChar> " `

312 z/OS: UNIX System Services User's Guide

Table 17: Translation of selected escaped characters (BPXFX437, BPXFX450, BPXFX471, BPXFX473,
BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497). (BPXFX437, BPXFX450,
BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497)
(continued)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> / \

<EscChar> : !

<EscChar> < {

<EscChar> > }

<EscChar> ^ <IS2> Ctrl-^

Escape sequences for a 3270 keyboard 313

314 z/OS: UNIX System Services User's Guide

Appendix E. Locale objects, source files, and
charmaps

The z/OS shells and utilities support the locales listed in the appendix in z/OS XL C/C++ Programming
Guide.

A locale name is the same as a locale object name. The suffix of the locale name, for example, IBM-277,
indicates the code page that the locale is based on.

The symbolic link is a shortened name for the complete locale object name; You can use the symbolic link
name when specifying a locale for an environment variable or with the setlocale() function. For
example, you can specify

LANG=En_US

instead of

LANG=En_US.IBM-1047

The compiled locale object files are in the directory /usr/lib/nls/locale. The locale source definition files
are in /usr/lib/nls/localedef. The source file name combined with the code page name results in the
name of the locale object.

The charmap files are in /usr/lib/nls/charmap. The charmap file names are identical to code page names
— for example, IBM-1047.

© Copyright IBM Corp. 1996, 2018 315

316 z/OS: UNIX System Services User's Guide

Appendix F. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed email message
to mhvrcfs@us.ibm.com.

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2018 317

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
mailto:mhvrcfs@us.ibm.com

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

318 z/OS: UNIX System Services User's Guide

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Accessibility 319

320 z/OS: UNIX System Services User's Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1996, 2018 321

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

322 z/OS: UNIX System Services User's Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 323

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interfaces
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of z/OS UNIX System Services.

This publication also documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/OS UNIX System Services. This information is identified where it
occurs, either by an introductory statement to a chapter or section or by the following marking:

[Programming Interface Information] [End Programming Interface Information]

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at Copyright and Trademark information
(www.ibm.com/legal/copytrade.shtml).

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

324 z/OS: UNIX System Services User's Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Acknowledgments

InterOpen Shell and Utilities is a source code product providing POSIX.2 (Shell and Utilities) functions to
the z/OS UNIX services offered with MVS. InterOpen/POSIX Shell and Utilities is developed and licensed
by Mortice Kern Systems (MKS) Inc. of Waterloo, Ontario, Canada.

© Copyright IBM Corp. 1996, 2018 325

326 z/OS: UNIX System Services User's Guide

Index

Special Characters
_BPX_BATCH_SPAWN environment variable 149
_BPX_BATCH_UMASK environment variable 149
_BPX_SHAREAS variable 161
_BPX_SPAWN_SCRIPT variable 40
-- option 61, 85
; (semicolon) 68, 91
? 74, 97
. (dot) 192
. (dot) shell command 108
.. (dot dot) 192
.profile file 35
' ' escape character 73, 96
" " escape character 74
[[]] double square brackets 119
* 74, 96
*** prompt 16
/dev directory 179
/dev/null 64, 88
/etc/profile 35
\ continuation character 18, 32
\ escape character 73, 95
&& 68, 91
#! 108, 126
` ` syntax 69, 92
< 88
> 63, 87
> prompt 19, 73, 96
>> 63, 87
|| 68, 91
$ prompt 13
$– 117
$? 117
$() syntax 69, 92
$@ 117
$* 117
$# 117
$N construct 112, 129

Numerics
2> 64, 88
3270 emulation 11
3270 pass-through mode

keyword on the OMVS command 25

A
access ACL 225
access control list (ACL)

using 225
accessibility

contact IBM 317
features 317

action
print 285

action (continued)
printf 300

address
socket 179
TCP/IP X-Window application 4

address alias 164
address space

limit for kernel 161
shared

keyword on OMVS command 26
TSO/E working directory 185

ADSTAR 211
alarm

keyword on OMVS command 24
alias

address 164
defining 65, 88
mailx 164
redefining 66, 89
tracking 67
turning off 68, 90

alias shell command 65, 88
ALLOCATE TSO/E command

example 255, 260, 264
path name and data set name requirement 182
specifying standard files 63, 87

appending to an archive 215
application

hung 28
archive file

copying into a file system 272
installing into the file system 270
transferring to a data set 271
transferring to tape or diskette 272

archive viewing 214
argument

array 299
arithmetic

calculation 109, 127
function 297
operator 287

array, used in awk 299
ASCII terminal interface 31
assistive technologies 317
audit file 222
autoloading 123
autoscrolling

keyword on OMVS command 24
awk utility

blanks and horizontal tabs 283
command line 285
compound assignment 289
controlling output 300
data files 281
escape sequences 302
formatting output 300
functions 296

 327

awk utility (continued)
output 285, 300
print action 285
printf action 300
program shape 282
running a program 285
running system commands 300

B
background job

canceling 138
exiting the shell 28
moving to foreground 136
suspended 136
TSO/E 135
using BPXBATCH or & 140

backing up files
backing up a directory 213
from the shell 212
manually 211
selected 211
selected by date 216
system 211

backslash (\) character 73, 95
backup file

TSM 211
base ACL entry 225
batch job

BPXBATA2 and BPXBATA8 146
BPXBATCH 140, 145
BPXBATSL 146
support for path name 143

BEGIN pattern 292
bit

bucket 64, 88
SETGID 225
SETUID 225
sticky 220, 222

blank screen
clearing with a form-feed 24

BPX.SUPERUSER FACILITY 80, 103
BPXBATA2, alias for BPXBATCH 146
BPXBATA8, alias for BPXBATCH 146
BPXBATCH

environment variable file (STDENV) 147
invoked from TSO/E 154
invoked in the OSHELL REXX exec 155
invoked with JCL

running a shell command 153
running a shell script 152
running an executable file or REXX exec 154

national language support 42, 55
parameter file (STDPARM) 149
REGION size 152
running a background job 140
standard input, output and error 146
STDENV 147
STDPARM 149
STEPLIB data sets, cataloged 152

BPXBATSL, alias for BPXBATCH 146
BPXFX100

escape sequences 311
BPXFX111

BPXFX111 (continued)
escape sequences 312

BPXFX211
escape sequences 312

BPXFX311 254, 263
BPXFX437

escape sequences 312
BPXFX450

escape sequences 312
BPXFX471

escape sequences 312
BPXFX473

escape sequences 312
BPXFX477

escape sequences 312
BPXFX478

escape sequences 312
BPXFX480

escape sequences 312
BPXFX484

escape sequences 312
BPXFX485

escape sequences 312
BPXFX497 312
bpxtrace

job tracing 136
bracket character

code page conversion 305
BSAM access, HFS files 144
buffer size, output

keyword on the OMVS command 25
built-in variable

numeric 293
string 294

byte-range locking 211

C
cancel shell command 249
canonical mode 14
carriage return 20
case-sensitive processing 200
cat shell command 210
catalog

master 179
user 179

cd shell command 192
changing a password or password phrase 80, 103
character conversion table

keyword on OMVS command 24
character set

double-byte
using 28

doublebyte
using 32

portable file name 199, 306
POSIX portable file name 306

character special file 179
characters

variant 4, 43, 56, 305
chaudit shell command 222
chgrp shell command 224
child process 135
chmod shell command 219

328

chown shell command 224
cksum shell command 79, 102
CLIST 8
code page

conversion
copying data 266
DBCS data 266
doublebyte data 306
iconv command 267
OMVS command CONVERT option 305
square brackets 305
UUCP commands 169
with Network File System 186

code set 266
code set conversion

automatic 190
combined commands

filter 69, 92
pipe 69, 92

command
argument 4, 62, 86
combining more than one 68, 91
continuation character (\) 18, 32
delaying execution 139
editing 77, 99
file system

shell 184
flag 4
history

function keys 77, 99
r command 76, 98

interrupting 19, 32
option 4, 61, 85
retrieving 75, 98
running after logoff 139
substitution 69, 92
usage 62
usage help 86

command line
awk 285
editing 77, 99
hiding

keyword, OMVS command 24
Communications Server session

ISPF Edit 32
multiple logins 32

comparison operator 287
compound assignment 289
compress shell command

running in batch 153
console file 179
construct

using quotes around 113, 130
contact

z/OS 317
continuation

character (\) 18, 32
prompt 73, 96

control
messages and online conversations 168

control characters
escape sequences 310

Control function key
using a 19

control structure
for loop 121, 134
if conditional 119, 132
while loop 121, 133

control structures
combining 122

conversion
between code pages 214, 266
OMVS command

CONVERT option 305
table copy commands 266

CONVERT copy command
conversion tables 266

converting files between 189
copy

data set into a data set
OCOPY command 263

data set into a directory
OPUTX command 256

data set into a file
cp command 253, 256
OCOPY command 254
OPUT command 253

data using TSO/E commands 251
data using z/OS shell commands 251
DBCS data 267
directory into a data set

cp command 261
OGETX command 261

executable into a file
cp command 264

file into a data set
OCOPY command 259
OGET command 258

file into a file
cp command 262
OCOPY command 263
pax command 263

file into data set
cp command 258

load module into a data set 264
load module into a file 264
MBCS data 267
VSAM data set 257

cp command 253, 256, 258, 261, 264
cp shell command

default permissions 218
cron daemon 4
Ctrl-C 32
current working directory 191
customization

.tcshrc 51
ENV variable 38
keyboard 20
OMVS command 23
PATH variable 38, 52
profile file 35
shell interface 23
shell options 28, 46, 59
square brackets 305
tcsh shell startup files 49

 329

D
daemons 4
data access 180
data set

allocating 254
cataloged 45, 58
copying

cp command 253, 256
into a file 252, 256, 263
load module into a file 264
OCOPY command 254, 263
OPUT command 253
OPUTX command 256

deleting 270
executable module

copying 264
hierarchical file system (HFS) 178
load module copying 264
STEPLIB

cataloging 45, 58
DD statement

in JCL
ddnames 143
pathname keywords 143

z/OS UNIX support 143
ddname 143
debug data

wrapping
keyword on OMVS command 26

debugging
keyword on the OMVS command 24

decrement operator 289
DELETE TSO/E command 270
dev directory 179
DFSMS

management of HFS data sets 178
DFSMS/MVS

Network File System feature 186
DFSMShsm

data set backup and restore 211
HFS data set back up and restore 178

diff shell command 196, 205
directory

access
using ACLs 225

changing 192
comparing contents 196
copying

cp command 261
OGETX command 261

creating 193
default permissions 193, 218
dev 179
finding 197
listing contents 195
permissions

default 218
displaying 223

removing 195
specifying name 191
sticky bit 220, 222
working 191

directory default ACL 225

displaying a user name 81, 104
Distributed File System (DFS) 178
distribution list

sending a message to 173
dot notation 192
double quotatioin marks enclosing a construct 113
double quotation marks enclosing a construct 74, 96, 130
double square brackets 119
double-byte character set

alias names 65
exporting a variable name 65
keyword on OMVS command 24
using 32
using a 28

double-byte data code page conversion 306
DSNTYPE keyword 144
dump

nontext file 65, 88
dynamic link library (DLL)

environment variable 40, 54

E
echo shell command 37, 51
ed editor

default permissions 218
using 239

editor
command editing 77, 99
ed 239
ISPF 227
sed 245
vi 228

effective group ID 225
effective user ID 225
emacs editor 78, 100
emulation

3270 11
END pattern 292
Enhanced ASCII

file tagging 189
porting 190

ENV variable
setting 38

environment file 38, 51
environment variable

BPX_BATCH_SPAWN 149
BPX_BATCH_UMASK 149
BPX_SHAREAS 161
BPX_SPAWN_SCRIPT 40
changing dynamically 37, 50
displaying 37, 51
ENV, setting 38
file (STDENV) 147
LANG 41, 44, 55, 57
LC_ALL 41, 55
LC_COLLATE 41, 55
LC_CTYPE 41, 55
LC_MESSAGES 41
LC_SYNTAX 43, 56
LOCPATH 44, 57
PATH

setting 38, 52
STEPLIB 45, 58

330

environment variable (continued)
TMP_VI 238
TZ 44, 57

error
redirection 64, 88
standard 62, 86

error message
shell 14

escape
character

keyword on OMVS command 25
notation 18
shell command 73, 95

sequence
BPXFX100 table 311
BPXFX111 table 312
BPXFX211 table 312
BPXFX437 table 312
BPXFX450 table 312
BPXFX471 table 312
BPXFX473 table 312
BPXFX477 table 312
BPXFX478 table 312
BPXFX480 table 312
BPXFX484 table 312
BPXFX485 table 312
BPXFX497 table 312
control characters 310
portable characters 309
tables 309

escape sequences 312
EscChar notation 18
EscChar-C 19, 28
EscChar-D 20, 27
EscChar-V 28
EscChar-Z 139
etc/profile 35
exec shell command 64
executable

copying
cp command 264

executable file
invoked with BPXBATCH and JCL 154

executable module
copying into a data set 264
copying into the file system 264

exit shell command 27
exit statement 296
expansion

preventing wildcard 46, 59
export shell command 110
export variable 36, 46, 110, 128
expressions 109, 127
extattr shell command 181
extended ACL entry 225
external link

deleting 205
DLL support 204
locale object files 204
NFS client support 204
sticky bit 183

F
feedback xxi
field 282
FIFO special file 179
file

.tcshrc 51
access

auditing 222
BSAM, QSAM 144
program 211
using ACLs 225

allocating 254
analyzing contents 208
awk program 286
back up and restore 211
browsing 210, 211
changing ownership 224
closing 64
comparing two 205
copying

cp command 258, 262
OCOPY command 259, 263
OGET command 258
pax command 263

creation
mode mask 224

default permissions
ed 244
ISPF Edit 227
OEDIT 227

deleting 201
descriptor 63
displaying contents 210, 211
editing with ISPF 227
environment variables for BPXBATCH 147
erasing 201
executable 143
finding 197
formatted browsing 211
formatting 247
I/O 180
inode number 202
locking 211
login script 38
moving 205
naming 199
nontext

dumping 65, 88
opening with JCL 144
parameter string for BPXBATCH (STDPARM) 149
permissions

default 218
displaying 223

printing 247
profile file example 35
removing 222
renaming 205, 222
searching

pattern 209
string 208

sending 167
sh_history 76, 98
sorting contents

 331

file (continued)
sorting contents (continued)

example 207
sticky bit 220
transfer

to a workstation 270
to the host 270
UUCP 169

file default ACL 225
file descriptor file 179
file name

creating 199
length 199
listing 197
portable file name character set 199
using a wildcard character 74, 96

file name completion
using 100

file system
data access 180
I/O 180
mountable 177
permissions 217
root 177
security 217
shell commands 184
using the ISPF shell 157, 186

file tagging
Enhanced ASCII 189
Unicode Services 190

file/etc/profile 35
filter 69, 92
find shell command 70, 79, 86, 93, 102, 197
flag, shell command 4
FOMTLINP module 31
fopen() function 144
for loop 121, 134, 296
foreground job

canceling 138
moving to background 136

form-feed character 24
formatting files

pr command 247
fsck shell command 186
FSUM messages 83, 105
FTAM function

OSI/File Services 270
ftp 27
function

arithmetic 297
getline 299
passing an array to 299
string manipulation 297
user-defined 299
using 122

function key
customizing

keyword on OMVS command 25
description of function 15
display

keyword on OMVS command 25
displaying the settings 13
setting

keyword on OMVS command 25

fuser utility 216

G
getline function 299
GID

changing 224
Greenwich Mean Time (GMT) 44, 57
grep shell command 66, 90, 208

H
hard link

deleting 205
head shell command 210
help facility 105
HELP TSO/E command 185
HFS

data set
backing up and restoring 178

power failure 186
history file

editing commands 76, 99
history shell command 75, 76, 98
hung application 28

I
iconv shell command

example 267
iconv utility

z/OS XL C/C++ 266, 306
identifier

job 135
process 135

IEWBLINK
copying executables to file 266
copying load module to file 265

if conditional 119, 132
if statement 296
IKJETF01 256
increment operator 289
inetd daemon 4
inode number 202
input

redirection 64, 88
standard 62, 86

INPUT HIDDEN indicator 21
INPUT indicator 20
Interactive System Productivity Facility 200
ISPF

browsing a file 211
case-sensitive processing 200
editing a file

sequence numbers 148
ISPF command 16
NUMBER OFF 148
sequence numbers 148
shell

help facility 158
locale 44, 57

uppercase processing 200
ISPF TSO/E command 16

332

J
JCL

case-sensitive processing 200
ddnames 143
example using OCOPY 255, 260, 264
path name and data set name requirement 182
path name support 143
shell commands 7
specifying standard files 63, 87
submitting 145

JES printer 247
job

background
canceling 138
moving to foreground 136
stopping 139
suspended 136

control commands 135
foreground

canceling 138
moving to background 136
stopping 139

identifier 135
priority 135
resuming stopped 139
status 137
tracing 136

job control language 7
job entry subsystem 247
jobs shell command 137

K
keyboard

escape sequence
BPXFX100 table 311
BPXFX111 table 312
BPXFX211 table 312
BPXFX437 table 312
BPXFX450 table 312
BPXFX471 table 312
BPXFX473 table 312
BPXFX477 table 312
BPXFX478 table 312
BPXFX480 table 312
BPXFX484 table 312
BPXFX485 table 312
BPXFX497 table 312
tables 309

navigation 317
PF keys 317
remapping 20
shortcut keys 317

kill shell command 135, 138
Korn shell 3

L
LANG variable 41, 44, 55, 57
language

of messages 44, 57
LC_ALL variable 41, 55

LC_COLLATE variable 41, 55
LC_CTYPE variable 41, 55
LC_MESSAGES 55
LC_MESSAGES variable 41, 55
LC_SYNTAX variable

limitations 44, 57
lex shell command

locale modifications 41, 54
LIBPATH variable 40, 54
line mode 14
LINES keyword, OMVS command 25
link

external 179, 186, 204
hard 202
symbolic 179, 202

ln shell command 202
load module

copying into a data set 264
copying into a z/OS UNIX file 264

locale
changing 54
code page conversion 305
customizing lex, mailx, make, and yacc 41, 54
default 4
ISPF shell 44, 57
LC_SYNTAX

example 43, 56
limitations 44, 57

lex, mailx, make, and yacc 41, 54
LOCPATH variable 44, 57
object files 44, 57
REXX execs 44, 57
selecting 41
selecting a 43, 54, 56
shell and utilities, changing 54
variant characters 4, 43, 56, 305

locale name 315
locale object files 204
LOCPATH variable 44, 57
login

from a remote system 31
multiple 32
name 193
script 38, 51

logout
shell 27

loop
for 296
while 296

lp shell command 248
lpstat shell command 249
ls command

for displaying file information 183
ls shell command 195, 223

M
magic number 108, 126
mail, steps for sending 163
mailx shell command

locale modifications 41, 54
make shell command

locale modifications 41, 54
man shell command 82, 105

 333

mask
file creation mode 224

master catalog 179
matching operator 289
member

partitioned data set
naming requirements 261

mesg shell command 168
messages

broadcasting 168
controlling 168
language of 44, 57
receiving 164, 173
sending

to MVS operator 164, 173
shell 83, 105
vi/ex file recovered 237

metacharacter 70, 93, 209
mkdir shell command

default permissions 218
MKDIR TSO/E command

default permissions 218
mode

cp command 218
default

directory 193
directory creation 218
file creation 218, 227

ed command 218
mask

file creation 224
mkdir command 218
MKDIR command 218
OCOPY command 218
oedit command 218
OEDIT command 218
OPUT command 218
redirection

creating a file 218
vi command 218

modified expansion 114, 131
more shell command 210
MORE... indicator 20
mountable file system 177
multiple commands

filter 69, 92
pipe 69, 92

multiple logins 32
multiple sessions

asynchronous terminal interface 32
keyword on OMVS command 26
OPEN subcommand 17
switching between 16

multiple-condition operator 289
mv shell command 205, 222, 251
MVS operator

sending a message to 164, 173

N
name

file 199
login 193

named pipe 179

navigation
keyboard 317

nawk utility 281
Network File System feature

code page conversion 186
external link 186
running an NFS-mounted executable 269

newline character
appending 20
suppressing 20

next statement 296
NEXTSESS subcommand 16
nice shell command 135
nohup shell command

z/OS shell processing 140
NOT ACCEPTED indicator 21
NOT ACCEPTED/MORE indicator 21
notation

dot 192
tilde (~) 192

null file 179
numeric value 284
numeric variable, built-in 293

O
obrowse shell command 210
OBROWSE TSO/E command

path name and data set name requirement 182
OCOPY TSO/E command

default permissions 218
octal numbers 220
od shell command 65, 88
oedit shell command default permissions 218
OEDIT TSO/E command

default permissions 218
path name and data set name requirement 182

OGET TSO/E command
path name and data set name requirement 182

OGETX TSO/E command 261
OMVS TSO/E command

CONVERT option 305
customizing 23
invoking the shell 11
subcommands 22

online conversation
having 167

online help 105
OPEN macro 144
OPEN subcommand 17
operation

compound assignment 289
ordering 288

operator
arithmetic 287
comparison 287
increment or decrement 289
matching 289
multiple-condition 289

operator message
sending 164, 173

option settings
shell session

deletion verification 60

334

option settings (continued)
shell session (continued)

displaying 47, 59
option, shell command 85
OPUT TSO/E command

default permissions 218
path name and data set name requirement 182

OPUTX TSO/E command 256
order, arithmetic operation 288
OS/2 Extended Edition

SEND and RECEIVE programs 269
OSHELL REXX exec 19, 155
OSI/File Services

FTAM function 270
output

awk
controlling 300

redirection 63, 87
standard 62, 86

output buffer size
keyword on the OMVS command 25

P
parameter

expansion 114, 131
positional 114, 131
special 116, 131

parameter string for BPXBATCH
file 149

parent process 135
partitioned data set member names 261
pass-through mode, 3270

keyword on the OMVS command 25
passwd shell command 80, 103
password or password phrase

changing 80, 103
path 181
PATH keyword 143
path name

JCL requirement 182
resolving symbolic links 182
TSO command requirement 182

PATH variable setting 38, 52
PATHDISP keyword 143
PATHMODE keyword 143
pathname

JCL 143
PATHOPTS keyword 143
pattern matching 209
pattern, awk

ranges 292
simple 282
special 292

pax (copy mode) shell command 263
PC 3270 emulation program

SEND and RECEIVE programs 269
performance

shared address space 161
shell script 40

permissions
bits 217
changing 219
cp command 218

permissions (continued)
default

directory 193
directory creation 218
file creation 218
ISPF Edit 227
OEDIT 227
summary 218

displaying 223
ed command 218
mkdir command 218
MKDIR command 218
OCOPY command 218
octal 220
oedit command 218
OEDIT command 218
OPUT command 218
redirection

creating a file 218
symbolic 219
vi command 218

PF key 13
pg shell command 210
PGID 135
PID 135
pipe

named 179
unnamed 179

pipeline 69, 92
placeholders 301
portable characters

escape sequences for 309
portable file name character set 306
porting considerations 190
positional parameter 112, 114, 129, 131
POSIX portable file name character set 306
power failure 186
PPID 135
pr shell command 211, 247
PREVSESS subcommand 17
print action, awk utility 285
PRINTDS TSO/E command 249
printenv shell command 37, 51
printf action, awk utility 300
printing

checking job status 249
lp command 248
TSO/E commands 248
z/OS Print Server 248

process
child 135, 161
ending 135
group 135
identifier 135
limit per user 161
parent 135, 161
priority 135

process IDs, listing 216
PROFILE PLANGUAGE TSO/E command 28
profile.profile 35
profile/etc/profile 35
program

awk, running 285
file, awk 286

 335

program (continued)
timing 80, 102

program function key 13
programming 85
prompt *** 16
prompt, continuation 73, 96
ps shell command 137
pwd shell command 191

Q
QSAM access, HFS files 144
QUIT subcommand 17
quotation marks enclosing a construct 113
quotes enclosing a construct 130

R
r shell command 76
RACF

BPX.SUPERUSER FACILITY 80, 103
random number files 179
ranges, in a pattern 292
RECEIVE program 269
RECEIVE TSO/E command 172
record keeping 79, 101
records 281
redirection

controlling 46, 59
creating a file

default permissions 218
REGION size, BPXBATCH 152
regular expression 210, 290
regular file 179
relative pathname

dot notation 192
tilde notation 192

remap keyboard 20
remote login 31
rename shell command 222
renice shell command 135
Resource Access Control Facility 4
restoring files

file system 211
from the shell 212, 216
restoring a directory 213

retrieve function key 77, 99
retrieving commands 75, 98
return statement 123
REXX

calling z/OS UNIX System Services 8
OSHELL 155
z/OS UNIX extensions 156

rlogin 31
rlogin session

ISPF Edit 32
multiple logins 32
retrieving commands 77, 99

rlogin shell command, porting 31
rm shell command 67, 90, 195, 201, 222
rmdir shell command 195, 222
root directory 177
RUNNING indicator 20

S
screen

clearing with a form-feed 24
SDSF (System Display and Search Facility)

print job 247
search path

verifying 39, 53
searching files 208
security

RACF 4
sed editor

using 245
SEND program 269
SEND TSO/E command 172
sending a file 167
sending a message 163, 166, 172
sending mail, steps for 163
sending to IBM

reader comments xxi
sequence numbers, ISPF 148
sessions

ASCII terminal limitations 32
keyword on OMVS command 26
using multiple shell 22

set shell command 28, 37, 46, 51, 59
set-group-ID bit 225
set-user-ID bit 225
setlocale() 44, 57, 204
sh_history file 76, 98
shared address space

keyword on OMVS command 26
shell

changing the locale 40
command

escape characters 73, 95
invoked with BPXBATCH 154
invoked with BPXBATCH and JCL 153
run from TSO/E 155

command -- option 61, 85
daemons 4
differences from UNIX or AIX 11
entering TSO/E commands 26
error message 14
escape sequence

BPXFX100 table 311
BPXFX111 table 312
BPXFX211 table 312
BPXFX437 table 312
BPXFX450 table 312
BPXFX471 table 312
BPXFX473 table 312
BPXFX477 table 312
BPXFX478 table 312
BPXFX480 table 312
BPXFX484 table 312
BPXFX485 table 312
BPXFX497 table 312
tables 309

exiting
using NOHUP 140
with a background job 140
with a nohup background job 139

function 122

336

shell (continued)
invoking 11
ISPF

help facility 158
login 11
logout 27
messages 83, 105
metacharacter 70, 93
options

deletion verification 60
displaying settings 47, 59
setting 28, 46, 59

prompt default 13
remote login 31
screen description 13
script

executable 107, 125
function 122
invoked with JCL using BPXBATCH 152
running 107, 125

special characters 70, 93
special parameters 116, 131
using multiple sessions 22
variable

arithmetic calculation 109, 127
creating 108, 126
exporting 36, 46, 110, 128

z/OS UNIX locale 44, 57
shell command

alias 88
awk 281
cat 210
cd 192
chaudit 222
chgrp 224
chmod 219
chown 224
cksum 79, 102
compress 153
cp 262
diff 196, 205
echo 37, 51
exec 64
exit 27
export 110
extattr 181
find 70, 79, 86, 93, 102, 197
fsck 186
grep 66, 90, 208
head 210
history 75, 76, 98
iconv 266, 267, 306
jobs 137
kill 138
ln 202
lp 248
ls 195, 223
mailx 163
man 82, 105
mesg 168
mkdir 193
more 210
mv 205, 222
nice 135

shell command (continued)
nohup 139
obrowse 210
od 65, 88
options 61
passwd 80, 103
pax (copy mode) 263
pg 210
pr 211, 247
printenv 37, 51
ps 137
pwd 191
r 76
rename 222
renice 135
rm 67, 90, 195, 201, 222
rmdir 195, 222
set 28, 37, 46, 51, 59
sort 206
stty 136
su 80, 103
submit 145
tail 210
talk 167
test 117
time 80, 102
tso 26, 81, 104, 108, 126
typeset 111
umask 224
uucp 169
uulog 171
uupick 171
uustat 171
uuto 169
uux 172
wait 139
wall 168
wc 208
whence 39
which 53
whoami 81, 104
writing 166

shell script
performance

improving 40
skulker 201
writing 107

shortcut keys 317
simple pattern 282
single quotation marks enclosing a construct 73, 96, 113,
131
skulker shell script 201
SMF (system management facilities) 222
socket

address 179
sort shell command 206
sorting key example 207
source command 126
special

characters 70, 93
parameters 116, 131
pattern 292

square brackets
customization 305

 337

square brackets (continued)
wildcard expansion 75, 97

standard error
BPXBATCH 146
ddname 63, 87
file descriptor 63
ISPF shell 157
meaning 62, 86
redirection 64, 88

standard input
BPXBATCH 146
ddname 63, 87
file descriptor 63
ISPF shell 157
meaning 62, 86
redirection 64, 88

standard output
BPXBATCH 146
ddname 63, 87
file descriptor 63
ISPF shell 157
meaning 62, 86
redirection 63, 87

statement
exit 296
if 296
next 296
return 123

status
indicator

location 13
meaning 20

job 137
print job 249

STATUS TSO/E command 249
stderr file 146, 157
stdin file 63, 87, 146, 157
stdout file 63, 87, 146, 157
STEPLIB data sets 45, 58, 152
STEPLIB variable 45, 58
sterr file 63, 87
sticky bit

symbolic and external links 183
STOP signal 139
storage

not enough 25
stream

closing 64
string

manipulation function 297
value 284
variable, built-in 294

stty shell command 136
su shell command 80, 103
subcommand mode

subcommands 22
using 22

subdirectory
removing 222

submit shell command 145
SUBMIT TSO/E command 135, 249
submitting JCL 145
substitution

command 69, 92

substring 111
summary of changes

z/OS UNIX
V2R2 xxii
V2R3 xxii

Summary of changes xxii
superuser

switching to 80, 103
whoami command 81, 104

symbolic link
deleting 205
sticky bit 183

symbolic links
command differences

tar, du, find, pax, rm, ls 183
symbolic mode 219
syscall command 156
System Display and Search Facility 9
system management facilities 222
system-specific directories

/etc, /tmp, /var, /dev 183

T
tab character

awk 283
talk shell command 167
TCP/IP

address for X-Window application 4
File Transfer Protocol (FTP) facility 27, 269

tcsh shell
changing the locale 54
customizing 49
files accessed at termination 60

telnet
from TSO/E 27

Temporary File System (TFS) 178
terminal

3270 11
ASCII interface 31
EBCDIC interface 11

terminal emulators 5
terminal file 179
test shell command 117
tilde (~) notation 192
time shell command 80, 102
time zone

specifying 44, 57
Tivoli Storage Manager 211
tracing

job 136
tracked alias 67
TRANSMIT TSO/E command 172
TSM file backup 211
tso command

using 81
tso shell command

in a shell script 108, 126
TSO/E

address space
working directory 185

case-sensitive processing 200
commands

entering from ISPF 185

338

TSO/E (continued)
commands (continued)

entering from the shell 26
printing files 248
using a relative path name 185

ftp and telnet 27
invoking BPXBATCH 154
mail facilities 163
prefix 182
prompt 16
switching to 27

TSO/E command
ALLOCATE 254
DELETE 270
HELP 185
ISPF 16
MKDIR 194
OBROWSE 211
OCOPY 254, 259
OGET 258
OGETX 261
OMVS 23
OPUT 253
OPUTX 256
PRINTDS 249
PROFILE PLANGUAGE 28
RECEIVE 172
SEND 172
STATUS 249
SUBMIT 135, 249
TRANSMIT 172

tsocmd command
using 82

typeset shell command 111
TZ variable 44, 57

U
UID

4294967294 223
changing 80, 103, 224

umask shell command 224
unalias shell command 68, 90
Unicode Services

file tagging 190
porting 190

Universal Time Coordinated (UTC) 44, 57
UNIX-to-UNIX copy program (UUCP) 163
unnamed pipe 179
user

catalog 179
classes 217
definition 217

user interface
ISPF 317
TSO/E 317

user-defined function 299
utility definition 3
UUCP

commands
code page conversion 169

daemons 168
file transfer

from a remote site 171

UUCP (continued)
file transfer (continued)

to a remote site 169
to the local public directory 170

file transfer (multiple)
to a remote site 170

file transfer status
checking 171

files
public directory 171

network, using 168
notification of file transfer 170
permissions 170
remote site

running a command on 172
transferring a file to a 169

uucp shell command 169
uulog shell command 171
uuname shell command 169
uupick shell command 169, 171
uustat shell command 169, 171
uuto shell command 169
uux shell command 169, 172

V
value

assigning to a variable 284
numeric 284
string 284

variable
assigning value 284
associating attributes 111
built-in numeric 293
built-in string 294
environment

BPX_SPAWN_SCRIPT 40
displaying 37, 51
ENV 38
LANG 41, 44, 55, 57
LC_ALL 41, 55
LC_COLLATE 41, 55
LC_CTYPE 41, 55
LC_MESSAGES 41, 55
LC_SYNTAX 43, 56
LIBPATH 40, 54
LOCPATH 44, 57
PATH 38, 52
TZ 44, 57

exporting
allexport option 46
profile file 36

shell
arithmetic calculation 109, 127
creating 108, 126
displaying definitions 112

variant characters 4, 43, 56, 305
vi editor

adding text 230
advanced topics 275
arrow keys 229
backwards search 235
changing text 233
checking substitutions 279

 339

vi editor (continued)
combining files 277
command editing 78, 99
controlling indention 277
copying text 237
cursor

moving 229, 231
cursor commands 232
default permissions 218
deleting text 233
determining line numbers 279
editing options

setting up a command file 276
editing several files 276
editing source code 277
file recovered message 237
locating text 234
making substitutions 278
message

file recovered 237
modes 229
moving text 236
pasting text 236
quitting a file 234
saving a file 234
searching

backwards 235
for brackets 278
for strings 234

setting tab stops 275
setting up an options command file 276
special characters 235
specifying a range of lines 278
text

adding 230
changing 233
copying 237
deleting 233
locating 234
moving 236
pasting 236

undoing a command 233
using abbreviations 275
vi/ex file recovered 237

viewing an archive 214
VSAM data set

copying to a file 257

W
wait shell command 139
wall shell command 168
wc shell command 208
whence shell command 39
which shell command 53
while loop 121, 133, 296
whoami shell command 81, 104
wildcard character

preventing expansion 46, 59
word count 208
working directory

TSO/E address space 185
workstation, remote login 31
write shell command 166

X
X-Window

TCP/IP workstation address 4
X-Window application

running 4

Y
yacc shell command

locale modifications 41, 54

Z
z/OS Print Server lp command 248
z/OS UNIX

summary of changes for V2R2 xxii
summary of changes for V2R3 xxii

z/OS XL C/C++ iconv utility 266, 267, 306
zero file 179

340

IBM®

SA23-2279-30

	Contents
	List of Figures
	List of Tables
	About this document
	Who should use z/OS UNIX System Services User's Guide?
	What is in z/OS UNIX System Services User's Guide?
	Tasks that can be performed in more than one environment
	z/OS information
	Discussion list

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS UNIX for Version 2 Release 3 (V2R3)
	Summary of changes for z/OS UNIX for Version 2 Release 2 (V2R2)
	z/OS Version 2 Release 1 summary of changes

	Part 1. The z/OS shells
	Chapter 1. An introduction to the z/OS shells
	About shells
	Shell commands and utilities
	The locale in the shells
	Daemon support
	Running an X-Window application
	The shell user
	Security

	Accessing the shells — the choices
	Terminal emulators

	Interoperability between the shells and MVS
	Parallels between the MVS environment and the shell environment
	Programming for everyday tasks
	Editing
	Job control
	Background jobs
	Programming
	Debugging
	Data management

	Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell
	Differences from a UNIX or AIX environment
	Invoking the shell
	Changing options on the OMVS command

	Understanding the shell screen
	Working in line mode
	Why isn't your output displayed on the screen?

	Determining function key settings and the escape character
	The function key functions
	The escape character

	Entering a shell command
	Customizing the variant characters on your keyboard
	Entering a long shell command
	Entering a shell command from TSO/E

	Interrupting a shell command
	Typing escape sequences in the shell
	Suppressing the newline character
	Keyboard remapping

	Determining your session status
	Scrolling through output
	Using function keys or subcommands
	Using cursor scrolling

	Running a subcommand
	Switching to subcommand mode

	Using multiple sessions
	Starting sessions
	Switching between sessions

	Customizing the OMVS interface
	An example of customizing the OMVS command
	The alarm setting (ALARM | NOALARM)
	Autoscrolling (AUTOSCROLL | NOAUTOSCROLL)
	The character conversion table (CONVERT)
	Double-byte character set support (DBCS | NODBCS)
	Debugging for the OMVS command (DEBUG)
	Giving an application control of the command line (ECHO | NOECHO)
	Ending 3270 pass-through mode (ENDPASSTHROUGH)
	The escape character (ESCAPE)
	Controlling the size of the output scroll buffer (LINES)
	Function key settings (PFn)
	Displaying the function key settings (PFSHOW | NOPFSHOW)
	Specifying Language Environment runtime options (RUNOPTS)
	Multiple sessions (SESSIONS)
	The shared TSO/E address space (SHAREAS | NOSHAREAS)
	Controlling data recorded in the debug data set (WRAPDEBUG)

	Performing TSO/E work or ISPF work after invoking the shell
	Entering a TSO/E command from the z/OS shell
	Switching to TSO/E command mode

	ftp or telnet from TSO
	Exiting the shell
	Getting rid of a hung application
	Using a double-byte character set (DBCS)
	Single-byte restrictions

	Chapter 3. The asynchronous terminal interface to the shells
	ASCII-EBCDIC translation
	Using rlogin to access the shell
	Using telnet to access the shell
	Using Communications Server login to access the shell
	The shell session
	Entering a shell command
	Interrupting a shell command
	Using multiple sessions
	Using a double-byte character set (DBCS)
	Standard shell escape characters

	Chapter 4. Customizing the z/OS shell
	Customizing your .profile
	Quoting variable values
	Changing variable values dynamically

	Understanding shell variables
	Customizing your shell environment: The ENV variable
	Customizing the search path for commands: The PATH variable
	Adding your working directory to the search path
	Checking the search path used for a command
	Customizing the FPATH search path: The FPATH variable

	Customizing the DLL search path: The LIBPATH variable
	Improving the performance of shell scripts
	Changing the locale in the shell
	Advantages of a locale compatible with the MVS code page
	Customizing for a locale not based on code page IBM-1047

	Advantages of a locale generated with code page IBM-1047
	Changing the locale setting in your profile
	Examples: Changing locale

	The LC_SYNTAX environment variable
	Limitations

	The LOCPATH environment variable

	Customizing the language of your messages
	Setting your local time zone
	Building a STEPLIB environment: The STEPLIB environment variable
	Restrictions on STEPLIB data sets

	Setting options for a shell session
	Exporting variables
	Controlling redirection
	Preventing wildcard character expansion
	Displaying input from a file
	Running a command in the current environment
	Displaying current option settings

	Chapter 5. Customizing the tcsh shell
	Understanding the startup files
	Quoting variable values
	Changing variable values dynamically

	Understanding shell variables
	Customizing your shell environment: The .tcshrc file
	Customizing the search path for commands: The PATH variable
	Adding your working directory to the search path
	Checking the search path used for a command

	Customizing the DLL search path: The LIBPATH variable
	Changing the locale in the shell
	Advantages of a locale compatible with the MVS code page
	Customizing for a locale not based on code page IBM-1047

	Advantages of a locale generated with code page IBM-1047
	Changing the locale setting in your profile
	Examples: Changing locale

	The LC_SYNTAX environment variable
	Limitations

	The LOCPATH environment variable

	Customizing the language of your messages
	Setting your local time zone
	Building a STEPLIB environment: The STEPLIB environment variable
	Restrictions on STEPLIB data sets

	Setting variables for a shell session
	Displaying current option settings
	Controlling redirection
	Preventing wildcard character expansion
	Displaying input from a file
	Displaying deletion verification

	Files accessed at termination

	Chapter 6. Working with z/OS shell commands
	Specifying shell command options
	Specifying options with accompanying arguments
	Help for shell command usage

	Understanding standard input, standard output, and standard error
	Redirecting command output to a file
	Redirecting input from a file
	Redirecting error output to a file
	Closing a file
	Dumping nontext files to standard output
	Setting up an alias for a command
	Defining an alias
	Redefining an alias for a session
	Setting up an alias for a particular version of a command
	Using alias tracking
	Turning off an alias

	Combining commands
	Using a semicolon (;)
	Using && and ||
	Using a pipe

	Using substitution in commands
	Using the find command in command substitution constructs

	Characters that have special meaning to the shell
	Characters used with commands
	Characters used in file names
	Redirecting input and output

	Using a special character without its special meaning
	The backslash
	A pair of single quotation marks (' ')
	A pair of double quotation marks (" ")

	Using a wildcard character to specify file names
	The * character
	The ? character
	The square brackets

	Retrieving previously entered commands
	Retrieving commands from the history file
	Editing commands from the history file
	Using the retrieve function keys
	Command-line editing
	Using the vi command editor
	Using the emacs command editor

	Using record-keeping commands
	Finding elements in a file and presenting them in a specific format
	Timing programs
	Using the passwd command
	Switching to superuser or another ID
	Using the whoami command
	Running a TSO/E command
	Using the tso command
	Using the tsocmd command

	Using the man command to get online help
	Shell messages

	Chapter 7. Working with tcsh shell commands
	Specifying shell command options
	Specifying options with accompanying arguments
	Help for shell command usage

	Understanding standard input, standard output, and standard error
	Redirecting command output to a file
	Redirecting input from a file
	Redirecting error output to a file
	Dumping nontext files to standard output
	Setting up an alias for a command
	Defining an alias
	Arguments in aliases

	Redefining an alias for a session
	Setting up an alias for a particular version of a command
	Turning off an alias

	Combining commands
	Using a semicolon (;)
	Using && and ||
	Using a pipe

	Using substitution in commands
	Using the find command in command substitution constructs

	Characters that have special meaning to the shell
	Characters used with commands
	Characters used in file names
	Redirecting input and output

	Using a special character without its special meaning
	The backslash
	A pair of single quotation marks (' ')
	A pair of double quotation marks (" ")

	Using a wildcard character to specify file names
	The * character
	The ? character
	The square brackets

	Retrieving previously entered commands
	Retrieving commands from the history file
	Editing commands from the history file
	Using the retrieve function keys
	Command-line editing
	Using the vi command editor
	Using the emacs command editor

	Using file name completion
	Using record-keeping commands
	Finding elements in a file and presenting them in a specific format
	Timing programs
	Using the passwd command
	Switching to superuser or another ID
	Using the whoami command
	Running a TSO/E command
	Using the tso command
	Using the tsocmd command

	Online help
	Using the man command

	Shell messages

	Chapter 8. Writing z/OS shell scripts
	Running a shell script
	Using the magic number
	Using TSO/E commands in shell scripts
	Using variables
	Creating a variable
	Calculating with variables
	Exporting variables
	Associating attributes with variables
	Displaying currently defined variables

	Using positional parameters — the $N construct
	Using quotation marks to enclose a construct in a shell script

	Using parameter and variable expansion
	Using special parameters in commands and shell scripts
	Using control structures
	Using the test command to test conditions
	The if conditional
	The while loop
	The for loop
	Combining control structures

	Using functions
	Autoloading functions

	Chapter 9. Writing tcsh shell scripts
	Running a shell script
	Using the magic number
	Using TSO/E commands in shell scripts
	Using variables
	Creating a shell variable
	Calculating with variables
	Setting environment variables

	Using positional parameters — the $N construct
	Using quotes to enclose a construct in a shell script

	Using parameter and variable expansion
	Using special parameters in commands and shell scripts
	Using control structures
	The if conditional
	The while loop
	The foreach loop
	Combining control structures

	Chapter 10. Using job control in the shells
	Running several jobs at once (foreground and background)
	Starting a job in the background with an ampersand (&)
	Moving a job to the background
	Moving a job to the foreground

	Setting up job tracing
	Checking the status of jobs
	Using the jobs command
	Using the ps command

	Canceling a job
	Canceling a foreground job
	Canceling a background job

	Stopping and resuming a job
	Stopping a foreground job
	Stopping a background job
	Resuming a stopped job

	Delaying a command
	Exiting the shell with background jobs running
	Changing the default in the z/OS shell

	Comparison of shell background jobs and MVS batch jobs

	Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF
	JCL support for z/OS UNIX
	The PATH keyword
	The DSNTYPE keyword
	Using the ddname in an application
	The fopen() function
	The OPEN macro

	Specifying a ddname in the JCL

	Using the submit command
	The BPXBATCH utility
	Aliases for BPXBATCH
	BPXBATSL
	BPXBATA2 and BPXBATA8

	Defining standard input, output, and error streams for BPXBATCH
	Guidelines for defining stdin, stdout, and stderr
	Ways to define stdin, stdout, and stderr

	Passing environment variables to BPXBATCH
	Guidelines for defining STDENV
	Ways to define STDENV
	Example: Setting up code page support in a STDENV file
	_BPX_BATCH_SPAWN and _BPX_BATCH_UMASK environment variables

	Passing parameter data to BPXBATCH
	Guidelines for defining STDPARM
	Ways to define STDPARM

	Invoking BPXBATCH in a batch job
	Example: Running a shell script in batch
	Example: Running a shell command in batch
	Example: Running a z/OS UNIX executable file or REXX exec in batch

	Invoking BPXBATCH from the TSO/E environment
	OSHELL: Running a shell command from the TSO/E READY prompt

	Using TSO/E REXX for z/OS UNIX processing
	Using the ISPF shell
	Invoking the ISPF shell
	Working in the ISPF shell
	Using the online help facility

	Chapter 12. Performance: Running executable files
	Improving shell script performance

	Chapter 13. Communicating with other users
	Using mailx to send and receive mail
	Steps for sending mail to another user
	Sending mail to a distribution list
	Sending a message to an MVS operator
	Receiving mail from other users
	Replying to mail
	Saving and deleting mail
	Ending the mailx program

	Using write to send a message or a file
	Sending a message: An example
	Ending a message
	Sending a file

	Using talk for an online conversation
	Beginning a conversation: An example
	Viewing the conversation

	Using wall to broadcast messages
	Controlling messages and online conversations
	Using the UUCP network
	Transferring a file to a remote site
	Using uucp to transfer files
	Using uuto to transfer files

	Transferring multiple files to a remote site
	Transferring a file to the local public directory
	Notification of transfer
	Permissions
	Transferring a file from a remote site
	Checking a file's transfer status
	Working with your files in the public directory
	Running a command on a remote site
	Using a remote file as an argument
	Using a local file as an argument

	Using TSO/E to send or receive mail
	Sending a message
	Sending a message to a distribution list
	Sending a message to an MVS operator
	Receiving mail from other users
	Receiving messages from other systems

	Part 2. The z/OS UNIX file system
	Chapter 14. An introduction to the z/OS UNIX file system
	The root file system and mountable file systems
	Directories
	Files
	Files not in the file system
	Comparison between MVS data sets and the z/OS UNIX file system
	Sharing files between LPARs
	Executable modules in the file system

	Path and path name
	Requirement for an absolute path name
	Resolving a symbolic link in a path name
	Symbolic and external links with a sticky bit

	Command differences with symbolic links
	Using commands to work with directories and files
	Entering a TSO/E command
	Using a relative path name on TSO/E commands
	Finding the data set that contains a file

	Using the ISPF shell to work with directories and files
	Using the Network File System feature
	External links

	Security for the file system
	The file system and power failures

	Chapter 15. Converting files between code pages
	Enhanced ASCII
	File tagging in Enhanced ASCII

	Unicode Services
	File tagging in Unicode Services

	Automatic code set conversion
	Porting considerations

	Chapter 16. Working with directories
	The working directory
	Displaying the name of your working directory
	Changing directories
	Using notations for relative path names
	Dot notation
	Tilde notation
	Example

	Creating a directory
	Removing a directory
	Listing directory contents
	Comparing directory contents
	Finding a directory or file

	Chapter 17. Working with files
	Using an editor to create a file
	Naming files
	Processing in uppercase and lowercase

	Deleting a file
	Deleting files over a certain age

	Identifying a file by its inode number
	Creating links
	Creating a hard link
	Creating a symbolic link
	Creating an external link

	Deleting links
	Renaming or moving a file or directory
	Comparing files
	Sorting file contents
	Using sorting keys — an example

	Counting lines, words, and bytes in a file
	Searching files by using pattern matching
	Patterns
	Regular expressions

	Browsing files
	Browsing files without formatting
	Browsing files with formatting

	Simultaneous access to a file
	Backing up and restoring files: options
	Backing up and restoring files from the shell
	Backing up a complete directory into an MVS data set
	Restoring a complete directory from an MVS data set
	Viewing the contents of an archive
	Converting between code pages
	Appending to an existing archive
	Backing up selected files by date

	Listing process IDs of processes with open files

	Chapter 18. Handling security for your files
	Default permissions set by the system
	Changing permissions for files and directories
	Using a symbolic mode to specify permissions
	Using octal numbers to specify permissions
	Position 1
	Positions 2, 3, and 4

	Using the sticky bit on a directory to control file access
	Auditing file access
	Displaying file and directory permissions
	Setting the file mode creation mask
	Changing the owner ID or group ID associated with a file
	Temporarily changing the user ID or group ID during execution
	Displaying extended attributes
	Using access control lists (ACLs) to control access to files and directories
	Setting up ACL support

	Chapter 19. Editing files
	Using ISPF to edit a z/OS UNIX file
	Using the vi screen editor
	Basic principles
	A simple vi session
	Adding text
	Moving the cursor up and down the screen
	Moving up and down through a file
	Moving the cursor on the line
	Moving to sentences and paragraphs
	Deleting text
	Changing text
	Undoing a command
	Saving a file
	Searching for strings
	Searching backwards through a file
	Case-sensitive searching
	Special search characters

	Moving text
	Copying text
	Other vi features
	Message: vi/ex edited file recovered
	Using the TMP_VI environment variable
	Stopping the mail messages
	Deleting the old mail messages

	Using the ed editor
	Creating and saving a text file
	Editing an existing file
	Identifying line numbers and changing your position in the buffer
	Changing position using numbers
	Changing position using a search string (regular expression)

	Appending one file to another
	Displaying the current line in the edit buffer
	Changing a character string
	Inserting text at the beginning or end of a line
	Deleting lines of text
	Changing lines of text
	Inserting lines of text
	Copying lines of text
	Moving lines of text
	Undoing a change
	Entering a shell command while using ed
	Ending an ed edit session
	Default permissions

	Using sed to edit a z/OS UNIX file

	Chapter 20. Printing files
	Formatting files for online browsing or printing
	Printing requests in shell scripts

	Printing with the lp command
	Printing with TSO/E commands
	Checking the status of print jobs

	Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets
	Copying data using z/OS shell commands
	Copying data using TSO/E commands
	Copying a sequential data set or PDS member into a z/OS UNIX file
	Using cp to copy a sequential data or PDS member into a z/OS UNIX file
	Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a sequential data set
	Using OPUT
	Example: Using OPUT with a PDSE member
	Example: Using OPUT with a sequential data set
	Using OCOPY
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY

	Copying a PDS or PDSE to a z/OS UNIX directory
	Using cp to copy a PDS to a z/OS UNIX directory
	Using OPUTX to copy a sequential data set or members of a PDS or PDSE
	Example: Using OPUTX with a PDSE

	Copying an MVS VSAM data set to a z/OS UNIX file
	Copying a z/OS UNIX file into a sequential data set or PDS member
	Using cp to copy a z/OS UNIX file into a sequential data set or PDS member
	Using OGET and OCOPY to copy a file into a sequential data set or a PDS member
	OGET
	Example: Using OGET with a PDSE member
	Example: Using OGET with a sequential data set

	OCOPY
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY

	Copying z/OS UNIX files into a PDS or PDSE
	Using cp to copy z/OS UNIX files into a PDS or PDSE
	Using OGETX to copy files into a PDS or PDSE
	Example: Using OGETX with a PDSE

	Copying files within the z/OS UNIX file system
	Copying an MVS data set into another MVS data set
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY

	Copying executable modules between MVS data sets and the z/OS UNIX file system
	Using cp to copy executables between MVS and z/OS UNIX
	Using TSO/E commands and JCL to copy executables
	Copying an executable module from a PDSE
	Copying an executable module from a PDS
	Example: Using JCL to copy from a PDS to the file system
	Copying an executable module from the file system
	Example: Using JCL to copy from the file system to a PDS

	Copying data: Code page conversion
	Single-byte data
	Double-byte data
	Example: Using the iconv shell utility with MBCS data

	Chapter 22. Transferring files between systems
	File transfer directly to or from z/OS UNIX
	Transferring files using File Transfer Protocol (FTP)
	Transferring files using the Network File System feature
	Transferring files using the SEND and RECEIVE programs
	Transferring files by using the File Transfer, Access, and Management Function

	File transfer using MVS data sets
	Transferring files into the z/OS UNIX file system
	Transferring files to the workstation

	Transporting an archive file on tape or diskette
	Putting an archive file into the file system
	Step 1. Transferring the archive file to a data set
	Step 2. Copying the file from a data set into a file system

	Sending an archive file to others
	Step 1. Create an archive file for multiple files
	Step 2. Copy the file from the file system to a data set
	Step 3. Transfer the archive file to a tape or diskette

	Appendix A. Advanced vi topics
	Editing options
	Setting tab stops
	Using abbreviations
	Other editing options
	Setting up an editing options command file

	Editing several files
	Combining files
	Editing program source code
	Controlling indention
	Searching for opening and closing brackets
	Making substitutions
	Specifying a range of lines to change
	Determining line numbers
	Checking as you substitute

	Appendix B. Using awk
	Data files
	Records
	Fields

	The shape of a program
	Simple patterns
	Using blanks and horizontal tabs
	Applying more than one instruction
	Assigning values to variables
	String values
	Numeric values
	Using the print action for output

	Running awk programs
	The awk command line
	Program files
	Sources of data

	Operators
	Comparison operators
	Arithmetic operators
	Operation ordering

	Compound assignments
	Increment and decrement operators
	Matching operators
	Multiple-condition operators

	Regular expressions
	Pattern ranges
	Using special patterns
	Built-in variables
	Built-in numeric variables
	Built-in string variables

	Statements and loops
	The if statement
	The while loop
	The for loop
	The next statement
	The exit statement

	Functions
	Arithmetic functions
	String manipulation functions
	User-defined functions
	Passing an array to a function
	The Getline function

	Running system commands
	Controlling awk output
	Formatting the output
	Placeholders
	Escape sequences

	Appendix C. Code page conversion when the shell and MVS have different locales
	Customizing the variant characters on your keyboard
	Using the CONVERT option on the OMVS command
	When do you need to convert between code pages?
	Methods for converting data
	The POSIX portable file name character set
	The POSIX portable character set

	Appendix D. Escape sequences for a 3270 keyboard
	Escape sequences for portable characters not on your keyboard
	Escape sequences for control characters
	Escape sequences unique to a conversion table
	BPXFX100 conversion table
	BPXFX111 and BPXFX211 conversion tables
	BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, BPXFX497 conversion tables

	Appendix E. Locale objects, source files, and charmaps
	Appendix F. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interfaces
	Trademarks

	Acknowledgments
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

